Skip to main content
Log in

MP2, DFT, and IQA study of substituent effect on the structure, stability, and bonding properties of CX2 singlet and triplet carbenes and related carbenoids

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

During this study, six carbenes, consisted of various substitutions (hydrogen, deuterium, fluorine, chlorine, bromine, and methyl) and their 24 related carbenoids (using Li, Na, Be, and Mg metals) were designed. These species were theoretically studied to obtain the extensive and comprehensive information about their structures, stabilities, atomic specifications, and bonding properties using MP2/aug-cc-pVTZ level of theory. Moreover, the PBE1PBE DFT method was used for IQA analyses using AIMAll program package. The calculated molecular parameters showed that the electronegativity and the size of ligand are effective on the studied structures. Moreover, the electronegativity effect is more important than the size. Atomic hybridizations results showed the p indexes of carbon in triplet carbenes are also smaller than those in singlet carbenes, but this difference in halogen-containing carbenes is smaller than the other carbenes. In population analyses, except for sodium-based carbenoids, all carbenoids have higher Eg values than the carbenes. The ΔG values for α-elimination reaction, as a method of preparation of these carbenes, were obtained in order of f < c < b < m < h, which is reversely related to the electronegativities of the connected ligands. IQA analyses were performed to evaluate the relative stability of carbenes. It was found that the classical interaction in C–F is attractive (negative) unlike the other mentioned bonds energy for carbenes. This electrostatic term in C–F is larger in the singlet state than the triplet state, which leads to the singlet state of CF2 being more stable and consequently more favorable than its triplet state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

All data are available and could be sent on request from the corresponding author.

References

  1. R. A. Moss, M. S. Platz, M. Jones Jr, (Eds.). John Wiley & Sons (2004)

  2. G.T. Gurmessa, G.S. Singh, Res. Chem. Intermed. 43, 6447 (2017)

    CAS  Google Scholar 

  3. F.E. Hahn, Chem. Rev. 118(19), 9455 (2018)

    CAS  PubMed  Google Scholar 

  4. M.S. Lee, J.E. Jackson, Res. Chem. Intermed. 20, 223 (1994)

    CAS  Google Scholar 

  5. J. Vignolle, X. Cattoen, D. Bourissou, Chem. Rev. 109(8), 3333 (2009)

    CAS  PubMed  Google Scholar 

  6. H. Tomioka, E. Iwamoto, H. Itakura, K. Hirai, Nature 412(6847), 626 (2001)

    CAS  PubMed  Google Scholar 

  7. A. Pawar, S. Gajare, A. Patil, R. Kurane, G. Rashinkar, S. Patil, Res. Chem. Intermed. 47, 2801 (2021)

    CAS  Google Scholar 

  8. J.C. Lin, R.T. Huang, C.S. Lee, A. Bhattacharyya, W.S. Hwang, I.J. Lin, Chem. Rev. 109(8), 3561 (2009)

    CAS  PubMed  Google Scholar 

  9. J. J. Zupancic, G. B. Schuster J. Am. Chem. Soc. 102(18), 5958 (1980).

  10. D. Bourissou, O. Guerret, F.P. Gabbaï, G. Bertrand, Chem. Rev. 100(1), 39 (2000)

    CAS  PubMed  Google Scholar 

  11. P.B. Grasse, B.E. Brauer, J.J. Zupancic, K.J. Kaufmann, G.B. Schuster, J. Am. Chem. Soc. 105(23), 6833 (1983)

    CAS  Google Scholar 

  12. A. Nemirowski, P.R. Schreiner, J. Org. Chem. 72(25), 9533 (2007)

    CAS  PubMed  Google Scholar 

  13. D.R. Myers, V. P. Senthilnathan, M. S. Platz, M. Jones, J. Am. Chem. Soc. 108(14) 4232 (1986)

  14. G. Bertrand, Carbene chemistry: from fleeting intermediates to powerful reagents. Boca Raton: CRC Press (2002).

  15. P.H. Mueller et al., J. Am. Chem. Soc. 103(17), 5049 (1981)

    CAS  Google Scholar 

  16. K. Hirai, T. Itoh, H. Tomioka, Chem. Rev. 109(8), 3275 (2009)

    CAS  PubMed  Google Scholar 

  17. C. Boehme, G. Frenking, J. Am. Chem. Soc. 118(8), 2039 (1996)

    CAS  Google Scholar 

  18. Y. Mizuhata, T. Sasamori, N. Tokitoh, Chem. Rev. 109(8), 3479 (2009)

    CAS  PubMed  Google Scholar 

  19. A.J. Arduengo, Acc. Chem. Res. 32(11), 913 (1999)

    CAS  Google Scholar 

  20. C. Hill, F. Bosold, K. Harms, J.C. Lohrenz, M. Marsch, M. Schmieczek, G. Boche, Chem. Ber. 130(9), 1201 (1997)

    Google Scholar 

  21. P. Bazinet, G.P. Yap, D.S. Richeson, J. Am. Chem. Soc. 125(44), 13314 (2003)

    CAS  PubMed  Google Scholar 

  22. A.J. Arduengo III., H.R. Dias, D.A. Dixon, R.L. Harlow, W.T. Klooster, T.F. Koetzle, J. Am. Chem. Soc. 116(15), 6812 (1994)

    CAS  Google Scholar 

  23. P.H. Mueller, N.G. Rondan, K.N. Houk, J.F. Harrison, D. Hooper, B.H. Willen, J.F. Liebman, J. Am. Chem. Soc. 103(17), 5049 (1981)

    CAS  Google Scholar 

  24. E.A. Carter, W.A. Goddard, J. Phys. Chem. 91(18), 4651 (1987)

    CAS  Google Scholar 

  25. F. Mendez, M.A. Garcia-Garibay, J. Org. Chem. 64(19), 7061 (1999)

    CAS  Google Scholar 

  26. C.M. Geise, Y. Wang, O. Mykhaylova, B.T. Frink, J.P. Toscano, C.M. Hadad, J. Org. Chem. 67(9), 3079 (2002)

    CAS  PubMed  Google Scholar 

  27. M. Soleilhavoup, G. Bertrand, Acc. Chem. Res. 48(2), 256 (2015)

    CAS  PubMed  Google Scholar 

  28. D. Munz, Organometallics 37(3), 275 (2018)

    CAS  Google Scholar 

  29. M.S. Sanford, M. Ulman, R.H. Grubbs, J. Am. Chem. Soc. 123(4), 749 (2001)

    CAS  PubMed  Google Scholar 

  30. A. Caballero, P.J. Pérez, Chem. Eur. J. 23(58), 14389 (2017)

    CAS  PubMed  Google Scholar 

  31. L. Friedman, H. Shechter, J. Am. Chem. Soc. 82(4), 1002 (1960)

    CAS  Google Scholar 

  32. P.S. Skell, A.Y. Garner, J. Am. Chem. Soc. 78(20), 5430 (1956)

    CAS  Google Scholar 

  33. R.A. Moss, Acc. Chem. Res. 13(2), 58 (1980)

    CAS  Google Scholar 

  34. A. Padwa, M.D. Weingarten, Chem. Rev. 96(1), 223 (1996)

    CAS  PubMed  Google Scholar 

  35. T. Satoh, Chem. Soc. Rev. 36(10), 1561 (2007)

    CAS  PubMed  Google Scholar 

  36. G. Costantino, R. Rovito, A. Macchiarulo, R. Pellicciari, THEOCHEM 581(1–3), 111 (2002)

    CAS  Google Scholar 

  37. L.R. Domingo, M. Ríos-Gutiérrez, M. Duque-Noreña, E. Chamorro, P. Pérez, Theor. Chem. Acc. 135(7), 1 (2016)

    CAS  Google Scholar 

  38. J. Messelberger, A. Grünwald, P. Pinter, M.M. Hansmann, D. Munz, Chem. Sci. 9(28), 6107 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. J. Vaitla, A. Bayer, K.H. Hopmann, Angew. Chem. Int. Ed. 57(49), 16180 (2018)

    CAS  Google Scholar 

  40. H. Qiu, C. Deng, Chem. Phys. Lett. 249(3–4), 279 (1996)

    CAS  Google Scholar 

  41. H. Hermann, J.C. Lohrenz, A. Kühn, G. Boche, Tetrahedron 56(25), 4109 (2000)

    CAS  Google Scholar 

  42. T. Clark, P. V. R. Schleyer, J. Chem. Soc. Chem. Comm. (20), 883 (1979)

  43. M.A. Vincent, H.F. Schaefer, J. Chem. Phys. 77(12), 6103 (1982)

    CAS  Google Scholar 

  44. T. Clark, P.V.R. Schleyer, Tetrahedron Lett. 20(51), 4963 (1979)

    Google Scholar 

  45. B.T. Luke, J.A. Pople, P.V.R. Schleyer, T. Clark, Chem. Phys. Lett. 102(2–3), 148 (1983)

    CAS  Google Scholar 

  46. T. Clark, P.V.R. Schleyer, J. Am. Chem. Soc. 101(26), 7747 (1979)

    CAS  Google Scholar 

  47. T. Koizumi, O. Kikuchi, Bull. Chem. Soc. Japan 68(1), 120 (1995)

    CAS  Google Scholar 

  48. R.H. Nishimura, V.E. Murie, R.A. Soldi, J.L. Lopes, G.C. Clososki, J. Braz.Chem. Soc. 26, 2175 (2015)

    CAS  Google Scholar 

  49. K.G. Taylor, Tetrahedron 38(18), 2751 (1982)

    CAS  Google Scholar 

  50. S. Molitor, V.H. Gessner, Angew. Chem. Int. Ed. 55(27), 7712 (2016)

    CAS  Google Scholar 

  51. V.H. Gessner, Chem. Comm. 52(81), 12011 (2016)

    CAS  PubMed  Google Scholar 

  52. Gaussian 09, Revision B.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F.Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, V. N., T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, (2016).

  53. AIMAll (Version 19.10.12), Todd A. Keith, TK Gristmill Software, Overland Park KS, USA, 2019 (aim.tkgristmill.com)

  54. V. GaussView, 6, Dennington, Roy (Todd A.; Millam, John M. Semichem Inc., Shawnee Mission, KS, Keith, 2016)

    Google Scholar 

  55. T. Koopmans, Physica 1, 104 (1933)

    CAS  Google Scholar 

  56. R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105(26), 7512 (1983)

    CAS  Google Scholar 

  57. A.M. Pendás, M. Blanco, E. Francisco. J. Chem. Phys. 120, 4581 (2004)

    PubMed  Google Scholar 

  58. M. Menéndez, R. Álvarez Boto, E. Francisco, Á. Martín Pendás J. Comput. Chem. 36, 833 (2015)

  59. M. A. Blanco, A. Martín Pendás, E. Francisco, J. Chem. Theory Comput. 1(6), 1096 (2005)

  60. A. Martín Pendás, M. Blanco, E. Francisco, J. Chem. Phys. 125, 184112 (2006).

  61. J.L. Casals-Sainz, F. Jiménez-Grávalos, A. Costales, E. Francisco, Á.M. Pendás, J. Phys. Chem. A 122, 849 (2018)

    CAS  PubMed  Google Scholar 

Download references

Funding

No fund is received for this work.

Author information

Authors and Affiliations

Authors

Contributions

ZE performed MP2 and DFT calculations and extracted the related data. HT designed the study, analyzed MP2 and DFT data, prepared related figures, tables, and scheme, and wrote the all parts of the manuscript except IQA part. KS performed IQA calculations and wrote related part in the manuscript.

Corresponding author

Correspondence to Hossein Tavakol.

Ethics declarations

Conflict of interest

The authors declare that there is no financial or personal interest.

Ethical approval

This work does not include any human and/or animal studies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2548 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emami-Meibodi, Z., Tavakol, H. & Eskandari, K. MP2, DFT, and IQA study of substituent effect on the structure, stability, and bonding properties of CX2 singlet and triplet carbenes and related carbenoids. Res Chem Intermed 49, 3205–3225 (2023). https://doi.org/10.1007/s11164-023-05031-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05031-5

Keywords

Navigation