Skip to main content
Log in

Reversible lewisite adsorption/desorption on the transition-metal-doped graphene: first-principle calculations

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Arsenical compound lewisite was developed as a potent chemical warfare agent in the blister agent class and later abandoned in the war areas. Exposure to lewisite can cause serious damage to human skin, eyes, and respiratory tract. Consequently, it is essential to develop materials that can detect and remove abandoned lewisite efficiently. In the present work, we investigated the ability of transition-metals-doped (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) graphene (TM/G) to eliminate lewisite using density functional theory. The adsorption geometry, adsorption energy, charge transfer, density of states, and UV spectra of the adsorption system of lewisite on TM/G (L@TM/G) were calculated and analyzed. Computational results demonstrate the presence of a strong chemical interaction between TM/G substrate and the lewisite molecule. More importantly, the adsorption of lewisite on TM/G can be tuned by introducing an electric field with proper direction and intensity, resulting in reversible adsorption/desorption. Furthermore, the electronic and optical properties of TM/G significantly change following the lewisite adsorption, rendering TM/G a promising material for the detection of lewisite. Herein, we suggest TM/G as a potential sensor and renewable adsorbent for lewisite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7 

Similar content being viewed by others

Availability of data and materials

Supplementary material is available at https://doi.org/10.1007/s11164-023-05022-6.

References

  1. D. Cortés-Arriagada, N. Villegas-Escobar, D.E. Ortega, Appl. Surf. Sci. 427, 227 (2018)

    Google Scholar 

  2. C. Sahu, S. Pakhira, K. Sen, A.K. Das, J. Phys. Chem. A. 117, 3496 (2013)

    CAS  PubMed  Google Scholar 

  3. D.H. Lee, D.N. Lee, J.I. Hong, New. J. Chem. 40, 9021 (2016)

    CAS  Google Scholar 

  4. F. Qiu, Y. Xia, T. Wu, P. Ye, X. Jiao, D. Chen, Sep. Purif. Technol. 252, 117452 (2020)

    CAS  Google Scholar 

  5. M. Nagpal, R. Kakkar, Sep. Purif. Technol. 211, 522 (2019)

    CAS  Google Scholar 

  6. H. Stone, D. See, A. Smiley, J. Hazard. Mater. 314, 59 (2016)

    CAS  PubMed  Google Scholar 

  7. J.A. Tørnes, A.M. Opstad, B.A. Johnsen, Sci. Total. Environ. 356, 235 (2006)

    PubMed  Google Scholar 

  8. B. Liu, X. Ren, L. Chen, X. Ma, Q. Chen, Q. Sun, L. Zhang, P. Si, L. Ci, J. Hazard. Mater. 373, 705 (2019)

    CAS  PubMed  Google Scholar 

  9. X. Chen, L. Xu, L.L. Liu, L. Zhao, C.P. Chen, Y. Zhang, X.C. Wang, Appl. Surf. Sci. 396, 1020 (2017)

    CAS  Google Scholar 

  10. Q. Kong, S. Preis, L. Li, P.C. Luo, Z. Wei, Y. Li, C. Wei, Sep. Purif. Technol. 232, 5956 (2020)

    Google Scholar 

  11. S. Peymani, M. Izadyar, F. Arkan, Res. Chem. Intermed. 47, 1071 (2021)

    CAS  Google Scholar 

  12. J.G. Yu, Y. Yu, H. Yang, Q. Liu, X.H. Chen, Y. Jiang, X.Q. Chen, F.P. Jiao, Sci. Total. Environ. 502, 70 (2015)

    CAS  PubMed  Google Scholar 

  13. Y. Sun, L. Chen, F. Zhang, D. Li, H. Pan, J. Ye, Solid State Commun. 150, 1906 (2010)

    CAS  Google Scholar 

  14. K. Ren, W. Tang, M. Sun, Y. Cai, Y. Cheng, G. Zhang, Nanoscale 12, 17281 (2020)

    CAS  PubMed  Google Scholar 

  15. A.A. Kistanov, S.K. Khadiullin, S.V. Dmitriev, E.A. Korznikova, ChemPhysChem 20, 575 (2019)

    CAS  PubMed  Google Scholar 

  16. A.A. Kistanov, S.K. Khadiullin, S.V. Dmitriev, E.A. Korznikova, Russ. J. Phys. Chem. A 93, 1088 (2019)

    CAS  Google Scholar 

  17. S.K. Khadiullin, A.A. Kistanov, S.V. Ustiuzhanina, A.R. Davletshin, K. Zhou, S.V. Dmitriev, E.A. Korznikova, ChemistrySelect 4, 10928 (2019)

    CAS  Google Scholar 

  18. J. Wang, S. Yu, Y. Zhao, X. Wang, T. Wen, T. Yang, Y. Ai, Y. Chen, T. Hayat, A. Alsaedi, X. Wang, Sep. Purif. Technol. 184, 88 (2017)

    CAS  Google Scholar 

  19. H.P. Zhang, X.-G. Luo, H.-T. Song, X.-Y. Lin, X. Lu, Y. Tang, Appl. Surf. Sci. 317, 511 (2014)

    CAS  Google Scholar 

  20. K. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A. Firsov, Nature 438, 197 (2005)

    CAS  PubMed  Google Scholar 

  21. P. Panigrahi, A.K. Dhinakaran, S.R. Naqvi, S.R. Gollu, R. Ahuja, T. Hussain, Nanotechnology 29, 355401 (2008)

    Google Scholar 

  22. P.V.C. Medeiros, A.J.S. Mascarenhas, F.B. Mota, C.M.C. Castilho, Nanotechnology 21, 485701 (2010)

    PubMed  Google Scholar 

  23. D. Chen, X. Zhang, J. Tang, Z. Cui, H. Cui, J. Hazard. Mater. 363, 346 (2019)

    CAS  PubMed  Google Scholar 

  24. H. Luo, K. Xu, Z. Gong, N. Li, Appl. Surf. Sci. 566, 150390 (2021)

    CAS  Google Scholar 

  25. W. Wang, J. Motuzas, X.S. Zhao, J.D. Costa, Sep. Purif. Technol 222, 381 (2019)

    CAS  Google Scholar 

  26. H. Luo, L. Zhang, Z. Gong, W. Wu, S. Xu, K. Zhang, H. Li, Nanotechnology 31, 405702 (2020)

    CAS  PubMed  Google Scholar 

  27. X.Y. Xu, S. Lin, H. Xu, H. Guo, C. Zhao, Appl. Surf. Sci. 556, 149776 (2021)

    CAS  Google Scholar 

  28. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    CAS  PubMed  Google Scholar 

  29. Z. Guo, S. Ni, H. Wu, J. Wen, X. Li, T. Tang, M. Li, M. Liu, Appl. Surf. Sci. 548, 149211 (2021)

    CAS  Google Scholar 

  30. L.-H. Qu, J.-M. Zhang, K.-W. Xu, Synth. Met. 209, 225 (2015)

    CAS  Google Scholar 

  31. M. Giovanni, H.L. Poh, A. Ambrosi, G. Zhao, Z. Sofer, F. Šaněk, B. Khezri, R.D. Webster, M. Pumera, Nanoscale 4, 5002 (2012)

    CAS  PubMed  Google Scholar 

  32. L. Ma, J.-M. Zhang, K.-W. Xu, V. Ji, Appl. Surf. Sci. 343, 121 (2015)

    CAS  Google Scholar 

  33. C. Zhao, H. Wu, Appl. Surf. Sci. 435, 1199 (2018)

    CAS  Google Scholar 

  34. Y. Tang, H. Zhang, W. Chen, Z. Li, Z. Liu, D. Teng, X. Dai, Appl. Surf. Sci. 508, 145245 (2020)

    CAS  Google Scholar 

  35. N.H. Raad, N. Manavizadeh, I. Frank, E. Nadimi, Appl. Surf. Sci. 565, 150454 (2021)

    Google Scholar 

  36. Y. Tang, W. Chen, C. Li, L. Pan, X. Dai, D. Ma, Appl. Surf. Sci. 342, 191 (2015)

    CAS  Google Scholar 

  37. Z. Zheng, H. Wang, Chem. Phys. Lett. 721, 33 (2019)

    CAS  Google Scholar 

  38. X. Zhou, C. Zhao, C.J. Chen, Y. Li, Appl. Surf. Sci. 525, 146595 (2020)

    CAS  Google Scholar 

  39. B. Delley, J. Chem. Phys. 113, 7756 (2000)

    CAS  Google Scholar 

  40. K. Harrath, S. Boughdiri, Res. Chem. Inetermed. 44, 957 (2018)

    CAS  Google Scholar 

  41. T. Zhang, H. Sun, F. Wang, W. Zhang, J. Ma, S. Tang, H. Gong, J. Zhang, Appl. Surf. Sci. 427, 101 (2018)

    Google Scholar 

  42. C. Wang, Y. Fang, H. Duan, G. Liang, W. Li, D. Chen, M. Long, Solid. State. Commun. 337, 114436 (2021)

    CAS  Google Scholar 

  43. T. Zhang, H. Sun, F. Wang, W. Zhang, J. Ma, S. Tang, H. Gong, J. Zhang, Thero. Chem. Acc. 136, 1 (2017)

    Google Scholar 

  44. J. Claudot, E. Soubeyrand-Lenoir, G. Maurin, Appl. Surf. Sci. 538, 148047 (2021)

    CAS  Google Scholar 

  45. J.P. Perdew, K. Burke, M. Ernzerhof, Chem. Phys. Lett. 77, 3865 (1996)

    CAS  Google Scholar 

  46. J. Claudot, E. Soubeyrand-Lenoir, G. Maurin, Appl. Surf. Sci. 551, 149433 (2021)

    CAS  Google Scholar 

  47. B.G. Johnson, P.M.W. Gill, J.A. Pople, J. Chem. Phys. 98, 5612 (1993)

    CAS  Google Scholar 

  48. A. Natan, M.C. Hersam, T. Nanotechnol. 24, 505715 (2013)

    Google Scholar 

  49. Z. Li, Z.H. Wu, Z. Zhao, Res. Chem. Intermed. 48, 4391 (2022)

    CAS  Google Scholar 

  50. X. Huang, W. Gu, Y. Ma, Res. Chem. Intermed. 47, 5133 (2021)

    Google Scholar 

  51. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys-Condens. Mat. 14, 2717 (2002)

    CAS  Google Scholar 

  52. D.R. Hamann, M. Schlüter, C. Chiang, Phys. Rev. Lett. 43, 1494 (1979)

    CAS  Google Scholar 

  53. C.-P. Zhang, B. Li, Z.-G. Shao, Appl. Surf. Sci. 469, 641 (2019)

    CAS  Google Scholar 

  54. A.I. Ayesh, Z. Karam, F. Awwad, M.A. Meetani, Sens. Actuators. B. 221, 201 (2015)

    CAS  Google Scholar 

  55. T. Zhang, H. Sun, F. Wang, W. Zhang, S. Tang, J. Ma, H. Gong, J. Zhang, Appl. Surf. Sci. 425, 340 (2017)

    CAS  Google Scholar 

  56. B. Xiao, Y. Li, X. Yu, J. Cheng, Sens. Actuators. B. 235, 103 (2016)

    CAS  Google Scholar 

Download references

Funding

This research was supported by National Natural Science Foundation of China (Nos: 22279014, 21876202 and 21177158).

Author information

Authors and Affiliations

Authors

Contributions

ZL wrote the main manuscript text and prepared all the figures. DH reviewed manuscript and improved writing. Dr. HL and Dr. HW took part in the discussion of the results. Dr. HS provided the whole supervision. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Hao Sun.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 9244 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Liu, H., Holiharimanana, D. et al. Reversible lewisite adsorption/desorption on the transition-metal-doped graphene: first-principle calculations. Res Chem Intermed 49, 2875–2887 (2023). https://doi.org/10.1007/s11164-023-05022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05022-6

Keywords

Navigation