Skip to main content
Log in

Hydrazine-induced synthesis of CdS nanorings for the application in photodegradation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this paper, CdS nanorings synthesized by a facile hydrazine-induced microwave method for the photodegradation of pollutants were reported for the first time. Different reaction method, microwave power, the category and dosage of pH regulating reagent, reaction temperature and reaction time were investigated. The formation of CdS nanorings from the self-assembly of nanoparticles was attributed to the coordination of hydrazine producing the dipole–dipole interaction among the uniform nanoparticles prepared by microwave method. The crystal phase, composition, morphology and surface property of CdS nanorings were characterized. The results showed that 100 nm-sized wurtzite CdS nanorings generated with the self-assembly of 5–8 nm nanoparticles, which presented mesoporous structures. To study the influence of ring-like structures on the photocatalysis, the photodegradation of rhodamine B (RhB) with CdS nanorings and nanoparticles was compared. The results showed that, CdS nanorings displayed higher photodegradation efficiency, which were originated from more favorable band edge potential and effective electron–hole separation producing more superoxide radical and holes as active specifies. The photodegradation path of RhB contained the process of the demethylation, the decarboxylation process, the chromophore cleavage and ring-open reactions. Finally, the available photodegradation of multiple pollutants and reusability of CdS nanorings were carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References

  1. M. Nemiwal, T.C. Zhang, D. Kumar, Sci. Total Environ. 767, 144896 (2021)

    CAS  PubMed  Google Scholar 

  2. H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Y. He, Water Res. 79, 128 (2015)

    CAS  PubMed  Google Scholar 

  3. M. Samadi, M. Zirak, A. Naseri, M. Kheirabadi, M. Ebrahimi, A.Z. Moshfegh, Res. Chem. Intermed. 45, 2197 (2019)

    CAS  Google Scholar 

  4. S. Sharma, V. Dutta, P. Raizada, A. Hosseini-Bandegharaei, P. Singh, V.-H. Nguyen, Environ. Chem. Lett. 19, 271 (2020)

    Google Scholar 

  5. H. Zeghioud, N. Khellaf, H. Djelal, A. Amrane, M. Bouhelassa, Chem. Eng. Commun. 203, 1415 (2016)

    CAS  Google Scholar 

  6. Y. Li, T. Jin, G. Ma, Y. Li, L. Fan, X. Li, Dalton Trans. 48, 5649 (2019)

    CAS  PubMed  Google Scholar 

  7. Q. Hao, J. Xu, X. Zhuang, Q. Zhang, Q. Wan, H. Pan, X. Zhu, A. Pan, Mater. Lett. 100, 141 (2013)

    CAS  Google Scholar 

  8. X. Xiong, T. Zhou, X. Liu, S. Ding, J. Hu, J. Mater. Chem. A 5, 15706 (2017)

    CAS  Google Scholar 

  9. J.H. Han, S. Lee, D. Yoo, J.H. Lee, S. Jeong, J.G. Kim, J. Cheon, J. Am. Chem. Soc. 135, 3736 (2013)

    CAS  PubMed  Google Scholar 

  10. X. Wu, Y. Yu, Y. Liu, Y. Xu, C. Liu, B. Zhang, Angew. Chem. Int. Ed. Engl. 51, 3211 (2012)

    CAS  PubMed  Google Scholar 

  11. H.J. Jang, S. Ham, J.A. Acapulco Jr., Y. Song, S. Hong, K.L. Shuford, S. Park, J. Am. Chem. Soc. 136, 17674 (2014)

    CAS  PubMed  Google Scholar 

  12. F. Li, Y. Ding, P. Gao, X. Xin, Z.L. Wang, Angew. Chem. Int. Ed. Engl. 43, 5238 (2004)

    CAS  PubMed  Google Scholar 

  13. X. Hu, J.C. Yu, J. Gong, Q. Li, G. Li, Adv. Mater. 19, 2324 (2007)

    CAS  Google Scholar 

  14. M. Grzelczak, J. Vermant, E.M. Furst, L.M. Liz-Marza’, ACS Nano 4, 3591 (2010)

    CAS  PubMed  Google Scholar 

  15. P.V. Nair, K.G. Thomas, J. Phys. Chem. Lett. 1, 2094 (2010)

    CAS  Google Scholar 

  16. D. Zhou, M. Liu, M. Lin, X. Bu, X. Luo, H. Zhang, B. Yang, ACS Nano 8, 10569 (2014)

    CAS  PubMed  Google Scholar 

  17. X. Li, X. Liu, X. Liu, Chem. Soc. Rev. 50, 2074 (2021)

    CAS  PubMed  Google Scholar 

  18. P.L. Saldanha, V. Lesnyak, L. Manna, Nano Today 12, 46 (2017)

    CAS  Google Scholar 

  19. M.B. Schütz, L. Xiao, T. Lehnen, T. Fischer, S. Mathur, Int. Mater. Rev. 63, 341 (2017)

    Google Scholar 

  20. W. Yue, Z. Wang, J. Gong, Z. Wang, Y. Dong, Mater. Sci. Semicond. Proc. 126, 105671 (2021)

    CAS  Google Scholar 

  21. Y. Volkov, S. Mitchell, N. Gaponik, Y.P. Rakovich, J.F. Donegan, D. Kelleher, A.L. Rogach, Chem. Phys. Chem. 5, 1600 (2004)

    CAS  PubMed  Google Scholar 

  22. W. Yue, Z. Wang, Z. Wang, Q. Xu, C. Zheng, X. Zha, H. Gui, H. Zhang, J. Nanopart. Res. 23, 112 (2021)

    Google Scholar 

  23. S. Liu, Y. Ning, X. Qi, J. Zhao, Y. Fu, B. Zhang, J. Gao, J. Miao, J. Song, Q. Huo, Res. Chem. Intermed. 47, 4193 (2021)

    CAS  Google Scholar 

  24. Y. Li, V.P. Kotzeva, D.J. Fray, Mater. Lett. 60, 2743 (2006)

    CAS  Google Scholar 

  25. H. Wu, F. Meng, L. Li, S. Jin, G. Zheng, ACS Nano 6, 4461 (2012)

    CAS  PubMed  Google Scholar 

  26. H. Ali, Res. Chem. Intermed. 46, 571 (2019)

    Google Scholar 

  27. D. Hu, Y. Xu, S. Zhang, J. Tu, M. Li, L. Zhi, J. Liu, Colloid Surf. A 608, 125582 (2021)

    CAS  Google Scholar 

  28. P. Makula, M. Pacia, W. Macyk, J. Phys. Chem. Lett. 9, 6814 (2018)

    CAS  PubMed  Google Scholar 

  29. X. Tang, H. Liu, C. Yang, X. Jin, J. Zhong, J. Li, Colloid Surf. A 599, 124880 (2020)

    CAS  Google Scholar 

  30. Q. Bi, Y. Gao, Z. Wang, C. Dang, Z. Zhang, L. Wang, J. Xue, Colloid Surf. A 599, 124849 (2020)

    CAS  Google Scholar 

  31. Q. Wang, J. Huang, H. Sun, K.-Q. Zhang, Y. Lai, Nanoscale 9, 16046 (2017)

    CAS  PubMed  Google Scholar 

  32. J. Zhang, Y. Song, X. Dong, H. Jiang, J. Tang, H. Li, J. Mater. Sci. 55, 11167 (2020)

    CAS  Google Scholar 

  33. Z. Fang, L. Zhang, T. Yang, L. Su, K.-C. Chou, X. Hou, Physica E 93, 116 (2017)

    CAS  Google Scholar 

  34. B. Shi, Y. Qi, L. Tian, L. Liu, Mater. Sci. Semicond. Proc. 98, 7 (2019)

    CAS  Google Scholar 

  35. A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem, RSC Adv. 4, 37003 (2014)

    CAS  Google Scholar 

  36. L. Ma, X. Ai, X. Yang, X. Cao, D. Han, X. Song, H. Jiang, W. Yang, S. Yan, X. Wu, J. Mater. Sci. 56, 8643 (2021)

    CAS  Google Scholar 

  37. B. Zhao, S. Li, Q. Zhang, Y. Wang, C. Song, Z. Zhang, K. Yu, Chem. Eng. J. 230, 236 (2013)

    Google Scholar 

  38. B. Srinivas, M.A. Pandit, K. Muralidharan, ACS Omega 4, 14970 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. H. Yang, J. Yang, RSC Adv. 8, 11921 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. M. Zhang, H.-f. Yin, J.-C. Yao, M. Arif, B. Qiu, P.-f. Li, X.-h. Liu, Colloids Surf. A 602, (2020).

  41. C. Dong, J. Lu, B. Qiu, B. Shen, M. Xing, J. Zhang, Appl. Catal. B 222, 146 (2018)

    CAS  Google Scholar 

  42. J. Cheng, N. Wei, Y. Wang, Y. Long, G. Fan, Sep. Purif. Technol. 277, 119441 (2021)

    CAS  Google Scholar 

  43. S. Vigneshwaran, C.M. Park, S. Meenakshi, Sep. Purif. Technol. 258, 118003 (2021)

    CAS  Google Scholar 

  44. S. Hisaindee, M.A. Meetani, M.A. Rauf, Trends Analyt. Chem. 49, 31 (2013)

    CAS  Google Scholar 

  45. M. Rakibuddin, S. Gazi, R. Ananthakrishnan, Catal. Commun. 58, 53 (2015)

    CAS  Google Scholar 

  46. T.S. Natarajan, K. Natarajan, H.C. Bajaj, R.J. Tayade, J. Nanopart. Res. 15, 1669 (2013)

    Google Scholar 

  47. Y.A.B. Neolaka, Z.S. Ngara, Y. Lawa, J.N. Naat, D.P. Benu, A. Chetouani, H. Elmsellem, H. Darmokoesoemo, H.S. Kusuma, J. Environ. Chem. Eng. 7, 103482 (2019)

    CAS  Google Scholar 

  48. J. Li, F. Yang, Q. Zhou, R. Ren, L. Wu, Y. Lv, J. Colloid Interface Sci. 546, 23545 (2019)

    Google Scholar 

  49. J. Sha, L. Li, Z. An, M. He, H. Yu, Y. Wang, B. Gao, S. Xu, Chem. Engin. J. 428, 131065 (2022)

    CAS  Google Scholar 

  50. J. Wang, X. Chang, Y. Zhao, H. Xu, G. He, H. Chen, Diam. Relat. Mater. 128, 109274 (2022)

    CAS  Google Scholar 

  51. S.N. Jamble, K.P. Ghoderao, R.B. Kale, Res. Chem. Intermed. 45, 1381 (2018)

    Google Scholar 

Download references

Funding

This work was supported by Universities' Scientific Research Projects in Anhui Province (KJ2021A0498), National Undergraduate Innovation Entrepreneurship Project in Local University (202210363060) and Graduate Education Innovation Fund in Anhui Polytechnic University (Y412022085).

Author information

Authors and Affiliations

Authors

Contributions

HL: Investigation, Data curation. CZ: Writing–original draft, Methodology. ZW: Investigation. QX: Formal analysis. FM: Data curation. ZB: Validation. WY: Conceptualization, supervision, Writing–review & editing, funding acquisition. GN: Writing–review & editing.

Corresponding authors

Correspondence to Wenjin Yue or Guangjun Nie.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This research does not include experiments involving human tissue and does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zheng, C., Wang, Z. et al. Hydrazine-induced synthesis of CdS nanorings for the application in photodegradation. Res Chem Intermed 49, 2807–2826 (2023). https://doi.org/10.1007/s11164-023-05018-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05018-2

Keywords

Navigation