Skip to main content
Log in

Fe3O4@L-arginine and Fe3O4@L-histidine nanoparticles for one-pot solvent-free sequential Knoevenagel–Michael addition reactions

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Fe3O4@L-Arginine and Fe3O4@L-Histidine nanoparticles (NPs) are synthesized and explored as catalysts for the sequential Knoevenagel condensation and Michael addition reactions (KMS). The reaction parameters like the amount of catalyst, temperature, and solvent systems are optimized for both of the catalysts for the Knoevenagel condensation reaction. It was observed that the developed catalyst systems work well under solvent-free conditions at 80 °C. Excellent to high yield was achieved in the corresponding Knoevenagel adducts (up to 97%), in turn, delivered good yield in Michael products (up to 70%). Surprisingly, Fe3O4@L-Hist NPs did not show any catalytic activity for the sequential Michael addition. The probable reasons for the high activities of Fe3O4@L-Arg NPs for KMS have been discussed. The catalyst was also recovered and reused for 5 cycles with equal performance in terms of activity and selectivity. The optimized protocol for sequential Knoevenagel condensation and Michael addition reaction can result in high isolated yields with saving in the cost of solvent and falls under the domain of green chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2.
Fig. 7

Similar content being viewed by others

Data availability

All data analyzed in this study are included in this article.

References

  1. M.P. van der Helm, B. Klemm, R. Eelkema, Nat. Rev. Chem. 3, 491 (2019)

    Article  Google Scholar 

  2. S.E. John, S. Gulati, N. Shankaraiah, Org. Chem. Front. 8, 4237 (2021)

    Article  CAS  Google Scholar 

  3. E. Heuson, F. Dumeigni, Catal Sci Technol. 10, 7082 (2020)

    Article  CAS  Google Scholar 

  4. S. Khaef, A. Rostami, V. Khakyzadeh, M.A. Zolfigol, A.A. Taherpour, M. Yarie, Mol. Catal. 484, 110772 (2020)

    Article  CAS  Google Scholar 

  5. A. Khazaei, A.R. Moosavi-Zare, F. Gholami, V. Khakyzadeh, Appl. Organometal. Chem. 30, 691 (2016)

    Article  CAS  Google Scholar 

  6. V. Khakyzadeh, H. Rezaei-Vahidian, S. Sediqi, S.B. Azimi, R. Karimi-Nami, Chem. Methodol. 5, 324 (2021)

    CAS  Google Scholar 

  7. B. List, Chem. Rev. 107, 5413 (2007)

    Article  CAS  Google Scholar 

  8. B. List, Angew. Chem. Int. Ed. 49, 1730 (2010)

    Article  CAS  Google Scholar 

  9. P.I. Dalko, L. Moisan, Angew. Chem. Int. Ed. 43, 5138 (2004)

    Article  CAS  Google Scholar 

  10. D. Elhamifar, S. Kazempoor, B. Karimi, Catal. Sci. Technol. 6, 4318 (2016)

    CAS  Google Scholar 

  11. L. Zhu, N. Lei, Z. Miao, C. Sheng, C. Zhuang, J. Yao, W. Zhang, Chin. J. Chem. 30, 139 (2012)

    Article  CAS  Google Scholar 

  12. Y. Wang, Z. Shang, T. Wu, J. Fan, X. Chen, J. Mol. Catal. A. Chem. 253, 212 (2006)

    Article  CAS  Google Scholar 

  13. A. Rahmati, K. Vakili, Amino Acids 39, 911 (2010)

    Article  CAS  PubMed  Google Scholar 

  14. J. Han, Y. Xu, Y. Su, X. She, X. Pan, Catal. Commun. 9, 2077 (2008)

    Article  CAS  Google Scholar 

  15. P.S. Rao, R.V. Venkataratnam, Tetrahedron Lett. 32, 5821 (1991)

    Article  CAS  Google Scholar 

  16. B. Green, R.I. Crane, I.S. Khaidem, R.S. Leighton, S.S. Newazand, T.E. Smyser, J. Org. Chem. 50, 640 (1985)

    Article  CAS  Google Scholar 

  17. R.M. Kumbhare, M. Sridhar, Catal. Commun. 9, 403 (2008)

    Article  CAS  Google Scholar 

  18. D.S. Bose, A.V. Narsaiah, J. Chem. Res. 1, 36 (2001)

    Article  Google Scholar 

  19. M. Trilla, R. Pleixats, M.W.C. Man, C. Bied, Green Chem. 11, 1815 (2009)

    Article  CAS  Google Scholar 

  20. K. Motokura, M. Tada, Y. Iwasawa, Chem. Asian J. 3, 1230 (2008)

    Article  CAS  PubMed  Google Scholar 

  21. R. Vaid, M. Gupta, Montash chem.146, 645 (2015)

  22. M. Kolahdoozan, R.J. Kalbasi, Z.S. Shahzeidi, F. Zamani, J. Chem. 496837 (2013)

  23. S. Kantevari, R. Bantu, L. Nagarapu, J. Mol. Catal. A: Chem 269, 53 (2007)

    Article  CAS  Google Scholar 

  24. V.S.R.R. Pullabhotla, A. Rahman, S.B. Jonnalagadda, Catal. Commun. 10, 365 (2009)

    Article  CAS  Google Scholar 

  25. P.M. Price, J. H. Clark, D. J. Macquarrie, J. Chem. Soc., Dalton Trans. 101 (2000)

  26. J. Yu, L. Zhang, B. Cheng, Y. Su, J. Phys. Chem. 111, 10582 (2007)

    CAS  Google Scholar 

  27. A. Corma, S. Iborra, I. Rodriguez, F. Sanchez, J. Catal. 211, 208 (2002)

    CAS  Google Scholar 

  28. M.B. Gawande, R.V. Jayaram, Catal. Commun. 7, 931 (2006)

    Article  CAS  Google Scholar 

  29. S. Saravanamurugan, M. Palanichamy, M. Hartmann, V. Murugesan, Appl. Catal. A. 298, 8 (2006)

    Article  CAS  Google Scholar 

  30. A. Corma, R.M. Martin-Aranda, Appl. Catal. A 105, 271 (1993)

    Article  CAS  Google Scholar 

  31. T.I. Reddy, R.S. Verma, Tetrahedron Lett. 38, 1721 (1997)

    Article  CAS  Google Scholar 

  32. U.D. Joshi, P.N. Joshi, S.S. Tamhankar, V.V. Joshi, C.V. Rode, V.P. Shiralkar, Appl. Catal. A. 239, 209 (2003)

    Article  CAS  Google Scholar 

  33. A. Corma, V. Fornes, R.M. Martin-Aranda, H. Garcia, J. Primo, Appl. Catal. 59, 237 (1990)

    Article  CAS  Google Scholar 

  34. J. N. Appaturi, R. Ratti, B. L. Phoon, S. M. Batagarawa, I. Ud Din, M. Selvaraj, R. J. Ramalingam, Dalton Trans. 50, 4445 (2021)

  35. K. Komura, Y. Mishima, M. Koketsu, Appl. Catal. A: General 445, 128 (2012)

    Article  Google Scholar 

  36. E. Rodrigo, B.G. Alcubilla, R. Sainz, J.L.G. Fierro, R. Ferritto, M.B. Cid, Chem. Commun. 50, 6270 (2014)

    Article  CAS  Google Scholar 

  37. H. Ishitani, K. Kanai, Y. Saito, T. Tsubogo, S. Kobayashi, Eur. J. Org. Chem. 6491 (2017)

  38. R. Jenkins, R.L. Snyder, Introduction to X-ray Powder Diffractometry (John Wiley & Sons, NY, 1996)

    Book  Google Scholar 

  39. E. Shah, H.P. Soni, RSC Adv. 3, 17453 (2013)

    Article  CAS  Google Scholar 

  40. E. Shah E, P. Upadhyay, M. Singh, M. S. Mansuri, R. Begum, N. Sheth, H. P. Soni, New J. Chem. 40, 9507 (2016)

  41. M. Kakihana, T. Nagumo, O. Makoto, H. Kakihana, J. Phys. Chem. 91, 6128 (1987)

    Article  CAS  Google Scholar 

  42. P.S. Subramanian, P.C. Dave, V.P. Boricha, D. Srinivas, Polyhedron 17, 443 (1998)

    Article  CAS  Google Scholar 

  43. G.B. Deacon, R.J. Philips, Coord. Chem. Rev. 33, 227 (1980)

    Article  CAS  Google Scholar 

  44. T.F. Pauwels, W. Lippens, P.W. Smet, G.G. Herman, A.M. Goeminne, Polyhedron 18, 1029 (1999)

    Article  CAS  Google Scholar 

  45. A. Barth, Prog. Biophys. Mol. Biol. 74, 141 (2000)

    Article  CAS  PubMed  Google Scholar 

  46. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985)

    Article  CAS  Google Scholar 

  47. J. Chomoucka, J. Drbohlavova, D. Huska, V. Adam, R. Kizek, J. Hubalek, Pharmacol. Res. 62, 144 (2010)

    Article  CAS  PubMed  Google Scholar 

  48. L. Li, Y. Yang, J. Ding, J.M. Xue, Chem. Mater. 22, 3183 (2010)

    Article  CAS  Google Scholar 

  49. H.L. Swanson, C. Guo, M. Cao, Phys. Chem. Chem. Phys. 22, 20349 (1998)

    Article  Google Scholar 

  50. R.A. Sheldon, Green Chem. 19, 18 (2017)

    Article  CAS  Google Scholar 

  51. D. Meng Y. Qiao, X. Wang, W. Wen, S. Zhao, RSC Adv. 8, 30180 (2018)

  52. D. Patel, R. Vithalani, C.K. Modi, New J. Chem. 44, 2868 (2020)

    Article  CAS  Google Scholar 

  53. G. Wang, Z. Ding, L. Meng, G. Yan, Z. Chen, J. Hu, Appl. Organomet. Chem. 34, e5907 (2020)

    CAS  Google Scholar 

  54. I. delHeirro, Y. Pérez, M. Fazardo, Mol. Catal. 450, 112 (2018)

Download references

Acknowledgements

The authors thank DST-FIST for providing NMR and BET surface area measurement facilities in the Department of Chemistry, Faculty of Science, The M. S. University of Baroda.

Funding

This work was financially supported by Science and Engineering Research Board (SERB), New Delhi under a sponsored scheme (No. EMR/2016/007638).

Author information

Authors and Affiliations

Authors

Contributions

BS contributed to methodology, validation, data curation, and formal analysis. HS contributed to writing—the original draft, conceptualization, validation, investigation, and funding acquisition.

Corresponding author

Correspondence to Hemant P. Soni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Supplementary information

The data that supports the findings of this study are available in the supplementary material of this article. HRSEM images, FTIR, UV–Vis and fluorescence, 1H NMR, 13C NMR spectra, and HRMS data of all the products are provided in Supplementary Materials.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8244 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanghavi, B., Soni, H.P. Fe3O4@L-arginine and Fe3O4@L-histidine nanoparticles for one-pot solvent-free sequential Knoevenagel–Michael addition reactions. Res Chem Intermed 49, 3963–3985 (2023). https://doi.org/10.1007/s11164-023-05017-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05017-3

Keywords

Navigation