Skip to main content
Log in

Development of chitosan@Fe2O3/rGO/Bi2S3 as a new eco-friendly photocatalyst for enhancing the catalytic stability and superior degradation of organic pollutants

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The interconnected network structure of the Fe2O3/rGO/Bi2S3 heterostructure nanocomposite was synthesized using an improved hydrothermal method. Fe2O3 nanoparticles and Bi2S3 nanorods were distributed and dispersed on rGO sheets, revealing significant photocurrent production. Heterostructured nanocomposite was confirmed by scanning electron microscope, X-ray diffraction spectroscopy (XRD), ultraviolet-diffused reflection spectroscopy (UV–DRS), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy were used to confirm the formation of the synthesize heterojunction nanoparticles. XRD analysis assures the crystallinity and also indicates the orthorhombic crystalline pattern of Bi2S3, whereas bead and thinfilm have the crystallinity drop-off due to the interaction of metal ions Bi3+, S2−, and Fe3+ in nanocomposite with chitosan. VSM data reveal the strong ferromagnetic behavior of synthesized particles even at room temperature, which enables recovery of Fe2O3/rGO/Bi2S3 powder. UV-DRS results and band energy studies substantiated that the enhancement of visible light active mechanism could be mainly attributed by the interaction of Fe2O3 and Bi2S3 in nanocomposite during photocatalysis which effectively improves e(−) and h(+) separation. The photocatalytic performance was evaluated with effluent chromophore reduction in the visible region and showed better degradation efficiency with real effluent than Bi2S3. One of the most challenging environments for engineering settings was the stability, recovery, and reusability of photocatalysts, as well as the attainment of zero liquid discharge. Alternatively, the creation of a photocatalyst with a nontoxic biopolymer combination is better for textile dye treatment plants. Astonishingly, the novel chitosan-based Fe2O3/rGO/Bi2S3 formation improves dye adsorption while also improving catalytic stability and recyclability. This research explores into the heterojunction photocatalytic study of various influents with varying loadings in order to satisfy the Tamilnadu Pollution Control Board's stringent limits.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data produced in this research can be made available upon request from the corresponding author.

References

  1. A.M. Alansi, M. Al-Qunaibit, I.O. Alade, T.F. Qahtan, T.A.Saleh. Visible-light responsive BiOBr nanoparticles loaded on reduced graphene oxide for photocatalytic degradation of dye. J. Mol. Liq. 253, 297–304. (2018)

  2. Y. Huang, W. Xing, L. Zhou, B. Tian, J. Zhang, Yi. Zhou, Res. Chem. Intermed. 48, 2887 (2022)

    Article  CAS  Google Scholar 

  3. S. Vadivel, V.P. Kamalakannan, K.N. Balasubramanian, Ceram Int. 40, 9 (2014)

    Article  Google Scholar 

  4. L. Zhao, S.-M. Lam, Y.T. Ong, J.-C. Sin, H. Zeng, Q. Xie, J.W. Lim, Environ. Technol. Innov. 28, 102941 (2022)

    Article  CAS  Google Scholar 

  5. S.-M. Lam, J.-C. Sin, H. Lin, H. Li, H. Zeng, Chemosphere 245, 125565 (2020)

    Article  CAS  PubMed  Google Scholar 

  6. R. Kant, Nat. Sci. 4(1), 22 (2012)

    CAS  Google Scholar 

  7. S. Khan, A. Gul, N. Memon, S.Q. Memon, Modified layered double hydroxide for degradation of dyes, in Advanced removal techniques for dye-containing wastewaters. ed. by S.S. Muthu, A. Khadir (Springer, Singapore, 2021), p.1

    Google Scholar 

  8. S.-M. Lam, M.-K. Choong, J.-C. Sin, H. Zeng, L. Huang, L. Hua, H. Li, Z.H. Jaffari, K.H. Cho, J. Environ. Chem. Eng. 10(5), 108284 (2022)

    Article  CAS  Google Scholar 

  9. R. Ameta, S. Benjamin, A. Ameta, S.C. Ameta, Mater. Sci. Forum. 734, 247 (2013)

    Article  Google Scholar 

  10. F. Yang, H. Zhang, Q. Tang, L. Shihui, H. Zhang, X. Zheng, Res. Chem. Intermed 48(10), 4163 (2022)

    Article  CAS  Google Scholar 

  11. A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem, RSC Adv. 4(70), 37003 (2014)

    Article  CAS  Google Scholar 

  12. F. Zhang, X. Wang, H. Liu, C. Liu, Y. Wan, Y. Long, Z. Cai, Appl. Sci. 9, 248 (2019)

    Article  Google Scholar 

  13. A. Kumar, G. Pandey, MSEIJ. 1(3), 106 (2017)

    Article  Google Scholar 

  14. L. Wang, T. Kumeria, A. Santos, P. Forward, M.F. Lambert, D. Losic, ACS Appl. Mater. Interfaces. 8(31), 20110 (2016)

    Article  CAS  PubMed  Google Scholar 

  15. S.-M. Lam, K.-C. Chew, J.-C. Sin, H. Zeng, H. Lin, H. Li, J.W. Lim, A.R. Mohamed, J. Environ. Chem. Eng. 10(3), 107594 (2022)

    Article  CAS  Google Scholar 

  16. A. Muthukrishnaraj, S. Vadivel, V.P. Kamalakannan, N. Balasubramanian, Mater. Res. Innov. 19(4), 258–264 (2015)

    Article  CAS  Google Scholar 

  17. B.A. Rachuri, P.N. Gongada, M. Rallabhandi, S.M. Botsa, Int J Environ Sci Technol. 1(10), 103 (2016)

    Google Scholar 

  18. G.K. Pradhan, D.K. Padhi, K.M. Parida, ACS Appl. Mater. Interfaces. 5, 9101 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. Y.J. XinZheng, F.Q. FangChai, A. Umar, J. XiangWu, J. Colloid Interface Sci. 457, 345 (2015)

    Article  Google Scholar 

  20. L. Zhang, Yu. Xinxin, Hu. Hongrui, Y. Li, Wu. Mingzai, Z. Wang, G. Li, Z. Sun, C. Chen, Sci. Rep. 5, 9298 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu. Tong, X. Zhou, H. Zhang, X. Zhong, Nano Res. 3, 379 (2010)

    Article  Google Scholar 

  22. Y.M. Hunge, A. Uchida, Y. Tominaga, Y. Fujii, A.A. Yadav, S.-W. Kang, N. Suzuki, I. Shitanda, T. Kondo, M. Itagaki, M. Yuasa, S. Gosavi, Akira Fujishima and Chiaki Terashima 11, 460 (2021)

    CAS  Google Scholar 

  23. Du. Mao, S. Xiong, Wu. Tianhui, D. Zhao, Q. Zhang, Z. Fan, Y. Zeng, F. Ji, Q. He, Xu. Xuan, Mater. 9, 160 (2016)

    Article  Google Scholar 

  24. L. Chen, J. He, Q. Yuan, Y. Liu, C.T. Au, S.F. Yin. Environmentally benign synthesis of branched Bi 2 O 3–Bi 2 S 3 photocatalysts by an etching and re-growth method. J. Mater. Chem. 3(3), 1096–1102 (2015)

  25. Hu. Jinli, H. Li, C. Huang, M. Liu, X. Qiu, Appl. Catal. B. 142–143, 598 (2013)

    Google Scholar 

  26. Z. Wei, Y. Zhu, in Nanostructured photocatalysts. ed. by H. Yamashita, H. Li (Springer International Publishing, Cham, 2016), p.359

    Chapter  Google Scholar 

  27. Na. Li, Y. Jin, Na. Li, Y. Jin, X. Hua, K. Wang, Xu. Jingjing, M. Chen, F. Teng, J. Mol. Catal. 395, 428 (2014)

    Article  CAS  Google Scholar 

  28. X. Li, C. Dong, Wu. Kong-Lin, YuHu. Shan-Hui Xia, M. Ling, K. Liu, Lu. Xiao-Ling, Y. Ye, X.-W. We, Mater. Lett. 164, 502 (2016)

    Article  CAS  Google Scholar 

  29. A. Ahmad, X. Meng, N. Yun, Z. Zhang, J. Nanomater. 1373725, 1 (2016)

    Article  Google Scholar 

  30. Z. Ni, Y. Sun, Y. Zhang, F. Dong, Appl. Surf. Sci. 365, 314 (2016)

    Article  CAS  Google Scholar 

  31. C. Pan, Xu. Jing, Yi. Chen, Y. Zhu, Appl. Catal. B. 115–116, 314 (2012)

    Article  Google Scholar 

  32. S. Vadivel, A. Nirmalesh Naveen, V.P. Kamalakannan, P. Cao, N. Balasubramanian, Appl. Surf. Sci. 351, 635 (2015)

    Article  CAS  Google Scholar 

  33. G. Nie, Lu. Xiaofeng, J. Lei, L. Yang, Ce. Wang, Electrochim. Acta. 154, 24 (2015)

    Article  CAS  Google Scholar 

  34. M. Khalil, M. Ridwan, R.T. Yunarti, Nanomaterials for photocatalytic reduction of carbon dioxide, in Nanomaterials for CO2 Capture, Storage, Conversion and Utilization. (Elsevier, 2021), p.211

    Chapter  Google Scholar 

  35. X. Xuan, Q. Zou, Y. Yuan, F. Ji, Z. Fan, B. Zhou, J. Nanomater. 2014, 1 (2014)

    Google Scholar 

  36. S. Mishra, A. Tripathi, Environ. Nanotechnol. Monit. Manag. 17, 100632 (2022)

    CAS  Google Scholar 

  37. Lu. Jianbo, B. Li, W. Li, X. Zhang, W. Zhang, P. Zhang, Su. Runxi, D. Liu, C. Surf, A Physicochem. Eng. Asp. 625, 126902 (2021)

    Article  Google Scholar 

  38. S.A. Ansari, M.H. Cho, New J. Chem. 41, 9314 (2017)

    Article  CAS  Google Scholar 

  39. B.M. Filip Jones, G. Mamba, S.A. Ansari, D. Maruthamani, V. Muthuraj, T.T.I. Nkambule, New J. Chem. 45, 22697 (2021)

    Article  Google Scholar 

  40. L. Heshmatynezhad, F. Jamali-Sheini, A. Monsh, Mater. Res. Express. 6(086332), 1 (2019)

    Google Scholar 

  41. L. Ma, Q. Zhao, Q. Zhang, M. Ding, J. Huang, X. Liu, Y. Liu, Wu. Xiang, Xu. Xijin, RSC Adv. 4, 41636 (2014)

    Article  CAS  Google Scholar 

  42. Lu. Jie-feng, C.-J. Tsai, Nanoscale Res Lett. 9, 1 (2014)

    Article  Google Scholar 

  43. S. Zhu, M. Chen, W. Ren, J. Yang, S. Qu, Z. Li, G. Diao, New J. Chem. 39, 7923 (2015)

    Article  CAS  Google Scholar 

  44. B. Saiphaneendra, T. Saxena, S.A. Singh, G. Madras, C. Srivastava, J. Environ. Chem. Eng. 5(1), 26 (2017)

    Article  CAS  Google Scholar 

  45. G.H. Gote, S.R. Bhopale, M.A. More, D.J. Late, Phys. Status Solidi A 216, 1900121 (2019)

    Article  Google Scholar 

  46. M.A. Radwan, M.A. Rashad, M.A. Sadek, H.A. Elazab, J. Chem. Technol. Metall. 54, 2 (2019)

    Google Scholar 

  47. H.Y.C. Eulalio, J.F.B. Rodrigues, K.O. Santos, C. Peniche, V. Marcus, L. Fook, Revista Cubana de Química 31(3), 309 (2019)

    Google Scholar 

  48. M. Mousavi, A. Habibi-Yangjeh, D. Seifzadeh, K. Nakata, S. Vadivel, Adv. Powder Technol. 30(3), 524 (2019)

    Article  CAS  Google Scholar 

  49. A. Hussain, N. Ali, S.S. Ali, J. Hou, I. Aslam, H. Naeem, M. Boota, M. Ul-Hussan, J. Yin, X. Wang, Res. Chem. Intermed. 48, 2857 (2022)

    Article  CAS  Google Scholar 

  50. S.A. Ansari, M.H. Cho, Sci. Rep. 7, 43055 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  51. M. Li, J. Wang, P. Zhang, Q. Deng, J. Zhang, K. Jiang, Z. Hu, J. Chu, Sci. Rep. 7, 42484 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. X. Ma, X. Liu, X. Zhang, C. Piao, Z. Liu, D. Fang, J. Wang, Int. J. Hydrog. Energy. 46(62), 31659 (2021)

    Article  CAS  Google Scholar 

  53. R. Rajesh kumar, R. Raj, A. Venimadhav, J. Magn. Magn. Mater. 473, 119–124 (2019)

    Article  Google Scholar 

  54. Lu. Juan, Q. Han, X. Yang, Lu. Lude, X. Wang, Mater. Lett. 61, 3425 (2007)

    Article  Google Scholar 

  55. S.A. Ansari, H. Yadav, M. Adeel, K. Yoo, J.-J. Lee, J. Mater. Sci. Mater. Electron. 30, 6929 (2019)

    Article  CAS  Google Scholar 

  56. L. Chen, D. Liu, P. Yang, RSC Adv. 9, 12793 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. I.A. Farion, V.F. Burdukovskii, B.C. Kholkhoev, P.S. Timashev, R.K. Chailakhyan, eXPRESS. Polym. Letters. 12, 1081 (2018)

    Article  CAS  Google Scholar 

  58. P.-C. Lia, G.-M. Liaoa, S. Rajesh Kumara, C.-M. Shiha, C.-C. Yang, D.-M. Wang, S. Jessie Lue, Electrochim. Acta. 187, 616 (2016)

    Article  Google Scholar 

  59. M. Nithya, K. Praveen, S. Saral Sessal, U. Sathya, N. Balasubramanian, A. Pandurangan, J. Mater. Sci. Mater. Electron. 29, 14733 (2018)

    Article  CAS  Google Scholar 

  60. H. Shen, Z. Shao, Q. Zhao, M. Jin, C. Shen, M. Deng, G. Zhong, F. Huang, H. Zhu, F. Chen, Z. Luob, J. Colloid Interface Sci. 573, 115 (2020)

    Article  CAS  PubMed  Google Scholar 

  61. R.A. Elkholya, E.M. Khalil, A.B. Farag, M.M. Abo El-Fadl, A.M. El-Aassar, Desalin. Water Treat. 193, 117 (2020)

    Google Scholar 

  62. H. Heidarpour, M. Golizadeh, M. Padervand, A. Karimi, M. Vossoughi, M.H. Tavakoli, J. Photochem. Photobiol. A Chem. 398, 112559 (2020)

    Article  CAS  Google Scholar 

  63. I.D. Dallabona, Á.L. Mathias, R.M. Matos Jorge, Int. J. Biol. Macromol. 627, 127159 (2021)

    Google Scholar 

  64. S. Liu, N. Zhang, Z.-R. Tang, Xu. Yi-Jun, ACS Appl. Mater. Interfaces. 4(11), 6378 (2012)

    Article  CAS  PubMed  Google Scholar 

  65. X. Meng, Z. Zhang, J. Photochem. Photobiol. A Chem. 310, 33 (2015)

    Article  CAS  Google Scholar 

  66. Z.-J. Yong, S.-M. Lam, J.-C. Sin, H. Zeng, A.R. Mohamed, Z.H. Jaffari, Inorg. Chem. Commun. 143, 109826 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author thank the Anna University Environmental Lab for their Instrumentation support.

Funding

This research was not supported by any substantial funding.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design contributed by NR and BN, methodology, and data collection contributed by NR and KNP; formal analysis contributed by NR and Asha Mathew; interpretation of results and draft manuscript preparation contributed by NR, KNP, and AM; and supervision and final validation contributed by BN. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Balasubramanian Natesan.

Ethics declarations

Conflict of interest

The authors state that they have no known financial or interpersonal conflicts of interest associated with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramasamy, N., Nagarasampatti Palani, K., Mathew, A. et al. Development of chitosan@Fe2O3/rGO/Bi2S3 as a new eco-friendly photocatalyst for enhancing the catalytic stability and superior degradation of organic pollutants. Res Chem Intermed 49, 2603–2624 (2023). https://doi.org/10.1007/s11164-023-05001-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05001-x

Keywords

Navigation