Skip to main content
Log in

Elucidation of the atrazine degradation intermediates and dependence on the physicochemical properties of the niobium pentoxide nanostructures

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Atrazine (ATZ) is a toxic herbicide used globally and has been found with its by-products in different environmental ecosystems. Due to these by-products toxicity, the scientific community has endeavored to seek technologies capable of removing them from the aquatic ecosystem, as well as finding alternatives to unravel the reaction mechanisms. The Nb2O5 semiconductor was obtained in this study by the hydrothermal method aiming at the ATZ degradation under UV light. A volume of 70 mL of 5 mg L–1 ATZ solution containing 10 mg of catalyst, and natural pH achieved 70% photocatalytic degradation of ATZ in 30 min under UV light, which represents an improvement of up to 46% compared to photolysis. After the ATZ degradation, the intermediates were monitored efficiently by molecular absorption spectrometry and hydrogen nuclear magnetic resonance (1H NMR) to reveal the chemical nature of these compounds. Hydroxyatrazine (HAT), Desethylatrazine (DEAT), and/or Desisopropylatrazine (DIAT) were suggested based on the analytical data, allowing to unveil the ATZ photocatalytic degradation mechanism mediated by Nb2O5 under UV light. Therefore, the results present in this study confirm an alternative for ATZ environmental remediation and the molecular absorption spectrometry and 1H NMR applicability to intermediates identification, which is essential to unravel the ATZ degradation mechanisms.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8.
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

All data and materials in this publication are available by contacting the corresponding author.

References

  1. I. Bretos, R. Jiménez, J. Ricote, M.L. Calzada, Chem. Soc. Rev. 47, 291 (2018)

    CAS  PubMed  Google Scholar 

  2. J.N. Kondo, K. Domen, Chem. Mater. 20, 835 (2008)

    CAS  Google Scholar 

  3. L.F.C.L.F.C. Gouvêa, A.J.A.J. Moreira, C.D.C.D. Freschi, G.P.G.G.P.G. Freschi, J. Food Compos. Anal. 70, 28 (2018)

    Google Scholar 

  4. R. Chaim, G. Chevallier, A. Weibel, C. Estournès, J. Mater. Sci. 53, 3087 (2018)

    CAS  Google Scholar 

  5. A.J. Moreira, D. Coelho, J.A. Dias, L.H. Mascaro, G.P.G. Freschi, V.R. Mastelaro, E.C. Pereira, J. Alloys Compd. 905, 164217 (2022)

    CAS  Google Scholar 

  6. B.S. Pinheiro, A.J. Moreira, L.L.S. Gimenes, C.D. Freschi, G.P.G. Freschi, Environ. Monit. Assess. 192, 331 (2020)

    CAS  PubMed  Google Scholar 

  7. K. Yubuta, K. Teshima, S. Oishi, Surf. Interface Anal. 46, 957 (2014)

    CAS  Google Scholar 

  8. L.H. Oliveira, E.C. Paris, W. Avansi, M.A. Ramirez, V.R. Mastelaro, E. Longo, J.A. Varela, J. Am. Ceram. Soc. 96, 209 (2013)

    CAS  Google Scholar 

  9. J.O.D. Malafatti, A.J. Moreira, C.R. Sciena, T.E.M. Silva, G.P.G. Freschi, E.C. Pereira, E.C. Paris, J. Environ. Chem. Eng. 9(2), 104820 (2020)

    Google Scholar 

  10. A.J. Moreira, S.R.R. Padilha, V.R. de Mendonça, E.C. Paris, C. Ribeiro, G.P.G. Freschi, T.R. Giraldi, Desalin. WATER Treat. 205, 252 (2020)

    CAS  Google Scholar 

  11. H. Chen, S. Yang, K. Yu, Y. Ju, C. Sun, J. Phys. Chem. A 115, 3034 (2011)

    CAS  PubMed  Google Scholar 

  12. E.C. Paris, J.O.D. Malafatti, C.R. Sciena, L.F.N. Junior, A. Zenatti, M.T. Escote, A.J. Moreira, G.P.G. Freschi, Environ. Sci. Pollut. Res. 28, 23731 (2020)

    Google Scholar 

  13. A.J. Moreira, B.S. Pinheiro, A.F. Araújo, G.P.G. Freschi, Environ. Sci. Pollut. Res. 23, 18502 (2016)

    CAS  Google Scholar 

  14. A.J. Moreira, A.C. Borges, L.F.C. Gouvea, T.C.O. MacLeod, G.P.G. Freschi, J. Photochem. Photobiol. A Chem. 347, 160 (2017)

    CAS  Google Scholar 

  15. A. Moreira, A. Borges, B. de Sousa, V. de Mendonça, C. Freschi, G. Freschi, J. Braz. Chem. Soc. 30, 1010 (2018)

    Google Scholar 

  16. Z. Meng, W.R. Carper, J. Mol. Struct. THEOCHEM 588, 45 (2002)

    CAS  Google Scholar 

  17. G. Wu, C.J. Freure, E. Verdurand, J. Am. Chem. Soc. 120, 13187 (1998)

    CAS  Google Scholar 

  18. V.V. Turov, A.A. Turova, E.V. Goncharuk, V.M. Gun’ko, Appl. Surf. Sci. 255, 3310 (2008)

    CAS  Google Scholar 

  19. Y. Kim, V. Shinde, D. Jeong, Y. Choi, S. Jung, Polymers (Basel). 11, 474 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. K. Gholivand, A.A. Ebrahimi Valmoozi, M. Bonsaii, Pestic Biochem. Physiol. 112, 40 (2014)

    CAS  PubMed  Google Scholar 

  21. C. Chizallet, G. Costentin, H. Lauronpernot, J. Maquet, M. Che, Appl. Catal. A Gen. 307, 239 (2006)

    CAS  Google Scholar 

  22. N. Ta, J. Hong, T. Liu, C. Sun, J. Hazard. Mater. 138, 187 (2006)

    PubMed  Google Scholar 

  23. J. Svenson, N. Zheng, U. Föhrman, I.A. Nicholls, Anal. Lett. 38, 57 (2005)

    CAS  Google Scholar 

  24. J. Caetano, P. Homem-de-Mello, A.B.F. da Silva, A.G. Ferreira, L.A. Avaca, J. Electroanal. Chem. 608, 47 (2007)

    CAS  Google Scholar 

  25. A.E.B. Lima, R.Y.N. Reis, L.S. Ribeiro, L.K. Ribeiro, M. Assis, R.S. Santos, C.H.M. Fernandes, L.S. Cavalcante, E. Longo, J.A.O. Osajima, G.E. Luz, J. Alloys Compd. 863, 158731 (2021)

    CAS  Google Scholar 

  26. H.-T. Nguyen Thi, K.-N. Tran Thi, N.B. Hoang, B.T. Tran, T.S. Do, C.S. Phung, K.-O. Nguyen Thi, Materials (Basel). 14(24), 7741 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. A.J. Moreira, J.O.D. Malafatti, T.R. Giraldi, E.C. Paris, E.C. Pereira, V.R. de Mendonça, V.R. Mastelaro, G.P.G. Freschi, J. Environ. Chem. Eng. 8(6), 104543 (2020)

    CAS  Google Scholar 

  28. N. Kumari, K. Gaurav, S.K. Samdarshi, A.S. Bhattacharyya, S. Paul, B.M. Rajbongshi, K. Mohanty, Sol. Energy Mater. Sol. Cells 208, 110408 (2020)

    CAS  Google Scholar 

  29. C. Gómez, J. Rodríguez-Páez, Process. Appl. Ceram. 12, 218 (2018)

    Google Scholar 

  30. G. Falk, M. Borlaf, M.J. López-Muñoz, J.C. Fariñas, J.B. Rodrigues Neto, R. Moreno, J. Mater. Res. 32, 3271 (2017)

    CAS  Google Scholar 

  31. R. Shao, Z. Cao, Y. Xiao, H. Dong, W. He, Y. Gao, J. Liu, RSC Adv. 4, 26447 (2014)

    CAS  Google Scholar 

  32. G.T.S.T. da Silva, A.E. Nogueira, J.A. Oliveira, J.A. Torres, O.F. Lopes, C. Ribeiro, Appl. Catal. B Environ. 242, 349 (2019)

    Google Scholar 

  33. I. Nowak, M. Jaroniec, Top. Catal. 49, 193 (2008)

    CAS  Google Scholar 

  34. L.P. Wang, L. Yu, R. Satish, J. Zhu, Q. Yan, M. Srinivasan, Z. Xu, RSC Adv. 4, 37389 (2014)

    CAS  Google Scholar 

  35. J. Jiang, X. Wang, Y. Liu, Y. Ma, T. Li, Y. Lin, T. Xie, S. Dong, Appl. Catal. B Environ. 278, 119349 (2020)

    CAS  Google Scholar 

  36. Y. Zhou, M. Yu, H. Liang, J. Chen, L. Xu, J. Niu, Appl. Catal. B Environ. 291, 120105 (2021)

    CAS  Google Scholar 

  37. K. Das, B. Satpati, I. Das, RSC Adv. 5, 27338 (2015)

    CAS  Google Scholar 

  38. R. Nakamura, M. Ishimaru, K. Sato, K. Tanaka, H. Nakajima, T.J. Konno, J. Appl. Phys. 114, 124308 (2013)

    Google Scholar 

  39. W.K. Wang, J.J. Chen, M. Gao, Y.X. Huang, X. Zhang, H.Q. Yu, Appl. Catal. B Environ. 195, 69 (2016)

    CAS  Google Scholar 

  40. C.G. Renda, C.P. Contreras Medrano, L.J.D. Costa, F.J. Litterst, E.M.B. Saitovitch, C.J. Magon, A.J. Gualdi, T. Venâncio, R. Bertholdo, A.J. Moreira, G.P.G. Freschi, A. de Almeida Lucas, J. Mater. Sci. 56, 1298 (2021)

    CAS  Google Scholar 

  41. O.F. Lopes, E.C. Paris, C. Ribeiro, Appl. Catal. B Environ. 144, 800 (2014)

    CAS  Google Scholar 

  42. J.A. Santacruz-Chávez, S. Oros-Ruiz, B. Prado, R. Zanella, J. Environ. Chem. Eng. 3, 3055 (2015)

    Google Scholar 

  43. J.A. Khan, M. Sayed, N.S. Shah, S. Khan, Y. Zhang, G. Boczkaj, H.M. Khan, D.D. Dionysiou, Appl. Catal. B Environ. 265, 118557 (2020)

    CAS  Google Scholar 

  44. J.A. Khan, C. Han, N.S. Shah, H.M. Khan, M.N. Nadagouda, V. Likodimos, P. Falaras, K. O’Shea, D.D. Dionysiou, Environ. Eng. Sci. 31, 435 (2014)

    CAS  Google Scholar 

  45. J.A. Khan, X. He, N.S. Shah, M. Sayed, H.M. Khan, D.D. Dionysiou, Chem. Eng. J. 325, 485 (2017)

    CAS  Google Scholar 

  46. J.A. Khan, X. He, N.S. Shah, H.M. Khan, E. Hapeshi, D. Fatta-Kassinos, D.D. Dionysiou, Chem. Eng. J. 252, 393 (2014)

    CAS  Google Scholar 

  47. E.C. Paris, J.O.D. Malafatti, A.J. Moreira, L.C. Santos, C.R. Sciena, A. Zenatti, M.T. Escote, V.R. Mastelaro, M.R. Joya, Environ. Sci. Pollut. Res. 29, 41505 (2022)

    CAS  Google Scholar 

  48. J.A. Khan, X. He, H.M. Khan, N.S. Shah, D.D. Dionysiou, Chem. Eng. J. 218, 376 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge to CNPq (grant # 485051/2011-7), Embrapa (Grant # 03.11.01.027.00.00), SisNano/MCTIC, CAPES (Grant # 88887.368533/2019-00 and Code # 001), and Agronano Network for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

AJM contributed to methodology, writing, review, and editing; JODM contributed to writing, review, and editing; CRS contributed to methodology; ECP contributed to writing, conceptualization, supervision, review, and editing.

Corresponding author

Correspondence to Ailton. J. Moreira.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, A.J., Malafatti, J.O.D., Sciena, C.R. et al. Elucidation of the atrazine degradation intermediates and dependence on the physicochemical properties of the niobium pentoxide nanostructures. Res Chem Intermed 49, 2855–2874 (2023). https://doi.org/10.1007/s11164-023-04989-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-04989-6

Keyword

Navigation