Skip to main content

Advertisement

Log in

Mechanism of Eu(III), La(III), Nd(III), and Th(IV) removal by g-C3N4 based on spectroscopic analyses and DFT theoretical calculations

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Spectroscopy and density functional theory (DFT) were employed to study the mechanism of Eu(III), La(III), Nd(III), and Th(IV) ions adsorption on graphitic carbon nitrides (g-C3N4) from aqueous solutions. Two structures of g-C3N4 were obtained using DFT calculation, triazine (C3N4a) and tris-triazine (C3N4b) units. The g-C3N4 layer structure possessed a large amount of = N–, –NH–, –NH2, C–N, and C = N, groups. The basic triazine units and surface functional groups remained after the reaction with ions and generated a three-coordinated (C3N4a-Eu/La/Nd/Th) structure with ions bound above the C3N4a plane and six-coordinated (C3N4b-Eu/La/Nd/Th) structure where the ion was trapped within the C3N4b plane possessing higher sorption energy and coordination number. Moreover, after reaction with Eu and Nd, the three-coordinated structure derived two structures (C3N4a-Eu/Nd-A, C3N4a-Eu/Nd-B) due to the lower sorption energy, which indicated the stability of the six coordination structure was higher than that of three coordination structure.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and upon request data can be available from the corresponding author on reasonable request.

References

  1. J. Goura, E. Colacio, J.M. Herrera, E.A. Suturina, I. Kuprov, Y.H. Lan, W. Wernsdorfer, V. Chandrasekhar, Chem. Eur. J. 23, 16621–16636 (2017)

    Article  CAS  PubMed  Google Scholar 

  2. C. Q. Yang, D. Mara, J. Goura, F. Artizzu and R. Van Deun, Molecules, 27 (2022).

  3. J. Goura, J.P.S. Walsh, F. Tuna, R. Halder, T.K. Maji, V. Chandrasekhar, Cryst. Growth Des. 15, 2555–2560 (2015)

    Article  CAS  Google Scholar 

  4. S.V. Eliseeva, J.-C.G. Bünzli, Chem. Soc. Rev. 39, 189–227 (2010)

    Article  CAS  PubMed  Google Scholar 

  5. G.C. Li, S.Y. Zhang, N.J. Wu, Y.Y. Cheng, J.S. You, Adv. Funct. Mater. 24, 6204–6209 (2014)

    Article  CAS  Google Scholar 

  6. X. Li, Y.J. Xie, B. Song, H.L. Zhang, H. Chen, H.J. Cai, W.S. Liu, Y. Tang, Angew. Chem. Int. Ed. 56, 2689–2693 (2017)

    Article  CAS  Google Scholar 

  7. C.H. Xiong, X.Y. Chen, C.P. Yao, J. Rare. Earth. 29, 979–985 (2011)

    Article  CAS  Google Scholar 

  8. Y.-N. Jing, S.-S. Li, M. Su, H. Bao, W.-M. Wan, J. Am. Chem. Soc. 141, 16839–16848 (2019)

    Article  CAS  PubMed  Google Scholar 

  9. J. Arnold, T.L. Gianetti, Y. Kashtan, Nat. Chem. 6, 554–554 (2014)

    Article  CAS  PubMed  Google Scholar 

  10. L. Yin, B. Hu, L. Zhuang, D. Fu, J. Li, T. Hayat, A. Alsaedi, X. Wang, Chem. Eng. J. 381, 122744 (2020)

    Article  CAS  Google Scholar 

  11. Y. Wu, B. Li, X. Wang, S. Yu, H. Pang, Y. Liu, X. Liu, X. Wang, Chem. Eng. J. 378, 122105 (2019)

    Article  CAS  Google Scholar 

  12. H. Pang, Z. Diao, X. Wang, Y. Ma, S. Yu, H. Zhu, Z. Chen, B. Hu, J. Chen, X. Wang, Chem. Eng. J. 366, 368–377 (2019)

    Article  CAS  Google Scholar 

  13. N. Pan, L. Li, J. Ding, S.K. Li, R.B. Wang, Y.D. Jin, X.K. Wang, C.Q. Xia, J. Hazard. Mater. 309, 107–115 (2016)

    Article  CAS  PubMed  Google Scholar 

  14. X. Li, Q. Li, W. Linghu, R. Shen, B. Zhao, L. Dong, A. Alsaedi, T. Hayat, J. Wang, J. Liu, Environ. Technol. Innov. 11, 328–338 (2018)

    Article  Google Scholar 

  15. L.L. Ma, J.M. Xu, N. Chen, M. Li, C.P. Feng, Ecotoxicol. Environ. Saf. 170, 763–770 (2019)

    Article  CAS  PubMed  Google Scholar 

  16. C.Y. Chang, S.Y. Chen, P. Klipkhayai, C. Chiemchaisri, Environ. Sci. Pollut. Res. 26, 6818–6828 (2019)

    Article  CAS  Google Scholar 

  17. Y. Song, M.T. Ammami, A. Benamar, S. Mezazigh, H.Q. Wang, Environ. Sci. Pollut. Res. 23, 10577–10586 (2016)

    Article  CAS  Google Scholar 

  18. Y.K. Zhu, H.B. Liu, T.H. Chen, B. Xu, P. Li, J. Mol. Liq. 218, 565–570 (2016)

    Article  CAS  Google Scholar 

  19. P. Negrea, A. Gabor, C.M. Davidescu, M. Ciopec, A. Negrea, N. Duteanu, J. Rare. Earth. 38, 306–314 (2020)

    Article  CAS  Google Scholar 

  20. H.Y. Wu, S.R. Qiang, Q.H. Fan, X.L. Zhao, P. Liu, P. Li, J.J. Liang, W.S. Wu, Appl. Clay. Sci. 152, 295–302 (2018)

    Article  CAS  Google Scholar 

  21. F.L. Liu, S. Hua, Q.Y. Hu, C. Wang, B.W. Hu, Cellulose 29, 1807–1820 (2022)

    Article  CAS  Google Scholar 

  22. Q. C. Li, J. Liao, S. Q. Huang, L. Ding, Y. Zhang and W. K. Zhu, J. Alloys Compd., 889 (2021).

  23. J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.-T. Lee, J. Zhong, Z. Kang, Science 347, 970–974 (2015)

    Article  CAS  PubMed  Google Scholar 

  24. Y. Wang, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 51, 68–89 (2012)

    Article  CAS  Google Scholar 

  25. G.G. Liu, T. Wang, H.B. Zhang, X.G. Meng, D. Hao, K. Chang, P. Li, T. Kako, J.H. Ye, Angew. Chem. Int. Ed. 54, 13561–13565 (2015)

    Article  CAS  Google Scholar 

  26. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8, 76–80 (2009)

    Article  CAS  PubMed  Google Scholar 

  27. Q.H. Li, M. Dong, R. Li, Y.Q. Cui, G.X. Xie, X.X. Wang, Y.Z. Long, Carbohydr. Polym. 253, 117200 (2021)

    Article  CAS  PubMed  Google Scholar 

  28. Z.R. Dai, Y. Zhen, Y.S. Sun, L. Li, D.X. Ding, Chem. Eng. J. 415, 129002 (2021)

    Article  CAS  Google Scholar 

  29. Y. Yang, F. Yang, Z. L. Li, N. Zhang and S. J. Hao, Micropor. Mesopor. Mat., 314 (2021).

  30. W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, S.-P. Chai, Chem. Rev. 116, 7159–7329 (2016)

    Article  CAS  PubMed  Google Scholar 

  31. B. Luo, G. Liu, L. Wang, Nanoscale 8, 6904–6920 (2016)

    Article  CAS  PubMed  Google Scholar 

  32. M. Groenewolt, M. Antonietti, Adv. Mater. 17, 1789–1792 (2005)

    Article  CAS  Google Scholar 

  33. F. Goettmann, A. Fischer, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 45, 4467–4471 (2006)

    Article  CAS  Google Scholar 

  34. G.Q. Zhao, J. Zou, J. Hu, X. Long, F.P. Jiao, Sep. Purif. Technol. 279, 168199 (2021)

    Google Scholar 

  35. H.B. Truong, S. Bae, J. Cho, J. Hur, Chemosphere 286, 131737 (2022)

    Article  CAS  PubMed  Google Scholar 

  36. Z.S. Chen, S. Zhang, Y. Liu, N.S. Alharbi, S.O. Rabah, S.H. Wang, X.X. Wang, Sci. Total Environ. 731, 139054 (2020)

    Article  CAS  PubMed  Google Scholar 

  37. Q. Liao, D.S. Zou, W. Pan, W.S. Linghu, R.P. Shen, X. Li, A.M. Asiri, K.A. Alamry, G.D. Sheng, L. Zhan, X.L. Wu, J. Mol. Liq. 252, 351–361 (2018)

    Article  CAS  Google Scholar 

  38. M. L. Li, Z. H. Ji, G. D. Sheng, S. D. Zhou, K. K. Chang, E. Q. Jin and X. J. Guo, J. Mol. Liq., 322 (2021).

  39. Y. Zheng, J. Liu, J. Liang, M. Jaroniec, S.Z. Qiao, Energ. Environ. Sci. 5, 6717–6731 (2012)

    CAS  Google Scholar 

  40. X. Zhong, W. Liang, Z. P. Lu, M. Q. Qiu and B. W. Hu, J. Mol. Liq., 323 (2021).

  41. Q. Liao, W. Pan, D.S. Zou, R.P. Shen, G.D. Sheng, X. Li, Y.L. Zhu, L.J. Dong, A.M. Asiri, K.A. Alamry, W.S. Linghu, J. Mol. Liq. 261, 32–40 (2018)

    Article  CAS  Google Scholar 

  42. L. J. Dong, Q. Liao, C. L. Wu, K. Du and G. D. Sheng, J. Environ. Chem. Eng., 9 (2021).

  43. S. Grimme, C. Bannwarth, P. Shushkov, J. Chem. Theory. Comput. 13, 1989–2009 (2017)

    Article  CAS  PubMed  Google Scholar 

  44. C. Bannwarth, S. Ehlert, S. Grimme, J. Chem. Theory. Comput. 15, 1652–1671 (2019)

    Article  CAS  PubMed  Google Scholar 

  45. A.D. Becke, J. Chem. Phys. 98, 1372–1377 (1993)

    Article  CAS  Google Scholar 

  46. A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  47. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B. 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  48. B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 157, 200–206 (1989)

    Article  CAS  Google Scholar 

  49. S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32, 1456–1465 (2011)

    Article  CAS  PubMed  Google Scholar 

  50. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010)

    Article  PubMed  Google Scholar 

  51. F. Neese, Wires. Comput. Mol. Sci. 8, e1327 (2017)

    Google Scholar 

  52. F. Weigend, R. Ahlrichs, PCCP 7, 3297–3305 (2005)

    Article  CAS  PubMed  Google Scholar 

  53. N.T.T. Ha, P.T. Be, N.N. Ha, RSC Adv. 11, 21048–21056 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. L. Dong, Q. Liao, C. Wu, K. Du, G. Sheng, J. Environ. Chem. Eng. 9, 105433 (2021)

    Article  CAS  Google Scholar 

  55. T. Wang, M. Huang, X. Liu, Z. Zhang, Y. Liu, W. Tang, S. Bao, T. Fang, RSC Adv. 9, 29109–29119 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. T. Wang, L. Zheng, Y. Liu, W. Tang, T. Fang, B. Xing, Sci. Total Environ. 730, 138928 (2020)

    Article  CAS  PubMed  Google Scholar 

  57. X. Chen, D.-H. Kuo, D. Lu, RSC Adv. 6, 66814–66821 (2016)

    Article  CAS  Google Scholar 

  58. J. Sun, J. Zhang, M. Zhang, M. Antonietti, X. Fu, X. Wang, Nat. Commun. 3, 1139 (2012)

    Article  Google Scholar 

  59. P.C. Nagajyothi, M. Pandurangan, S.V.P. Vattikuti, C.O. Tettey, T.V.M. Sreekanth, J. Shim, Sep. Purif. Technol. 188, 228–237 (2017)

    Article  CAS  Google Scholar 

  60. T. Xiong, W.L. Cen, Y.X. Zhang, F. Dong, ACS Catal. 6, 2462–2472 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Zhejiang Basic Public Welfare Research project in 2018 year (LGG18B070002). Prof. S. Zhou from Zhejiang university was great appreciated the DFT calculations.

Author information

Authors and Affiliations

Authors

Contributions

XW contributed to validation, formal analysis, and investigation. YP contributed to conceptualization, supervision, and writing—original draft. ML contributed to visualization. WL contributed to funding acquisition. XG contributed to writing—review and editing.

Corresponding author

Correspondence to Yixin Pan.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Pan, Y., Li, M. et al. Mechanism of Eu(III), La(III), Nd(III), and Th(IV) removal by g-C3N4 based on spectroscopic analyses and DFT theoretical calculations. Res Chem Intermed 49, 2691–2704 (2023). https://doi.org/10.1007/s11164-023-04954-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-04954-3

Keywords

Navigation