Skip to main content

Advertisement

Log in

Design of novel 2-amino-pyrans via a green and facile one-pot multicomponent protocol using RuO2/Al2O3 as reusable catalyst

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A facile, eco-friendly, and efficient approach for the multicomponent synthesis of 2-amino-pyran analogues (4a–j) is described that involves the reaction of substituted aldehydes, methyl cyanoacetate, and 1,3-cyclohexadione in a one-pot method using ruthenia-doped alumina (RuO2/Al2O3) as heterogeneous catalyst in a green solvent system. A simple wet-impregnation approach was used to prepare the catalyst material and was well-characterized using several analytical techniques like PXRD, TEM, SEM, SEM–EDX, and BET analysis. The key benefits of the current protocol are operational simplicity, economy, green reaction conditions, easy workup, short reaction time (10 min), higher product yields (94–98%), and no need for column chromatographic purification. The additional key advantage of this method is the recyclability and reusability of catalyst material up to eight runs through simple filtration without any significant loss of its catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6

Similar content being viewed by others

References

  1. Ch. Madhavi, H. Ganja, N. Kerru, S. Maddila, S.B. Jonnalagadda, Appl. Organomet. Chem. 34, e6442 (2021). https://doi.org/10.1002/aoc.6442

  2. N. Kerru, S. Maddila, S.B. Jonnalagadda, Front. Chem. 9, 638832 (2021). https://doi.org/10.3389/fchem.2021.638832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. K.K. Gangu, J.V.S.K.V. Kalyani, T.S. Guru, S. Maddila, S.B. Jonnalagadda, Mater. Today Commun. 28, 102206 (2021)

    Google Scholar 

  4. N. Kerru, S. Maddila, S.B. Jonnalagadda, Curr. Org. Chem. 23, 3156 (2019). https://doi.org/10.2174/1385272823666191202105820

    Article  CAS  Google Scholar 

  5. N. Kerru, L. Gummidi, S. Maddila, S.B. Jonnalagadda, Curr. Org. Chem. 25, 1 (2021). https://doi.org/10.2174/1385272824999201020204620

    Article  CAS  Google Scholar 

  6. D.J. Rao, N. Kerru, S. Maddila, Chem. Data Collect. 32, 100669 (2021). https://doi.org/10.1016/j.cdc.2021.100704

    Article  CAS  Google Scholar 

  7. N. Kerru, L. Gummidi, S. Maddila, S.B. Jonnalagadda, Inorg. Chem. Commun. 123, 108321 (2021). https://doi.org/10.1016/j.inoche.2020.108321

    Article  CAS  Google Scholar 

  8. S. Harikrishna, A.R. Robert, H. Ganja, S. Maddila, S.B. Jonnalagadda, Sustain. Chem. Pharm. 16, 100265 (2020). https://doi.org/10.1016/j.scp.2020.100265

    Article  Google Scholar 

  9. M. Costa, T.A. Dias, A. Brito, F. Proenca, Eur. J. Med. Chem. 123, 487 (2016). https://doi.org/10.1016/j.ejmech.2016.07.057

    Article  CAS  PubMed  Google Scholar 

  10. S. Maddila, S. Gorle, S.B. Jonnalagadda, Expert Opin. Drug Discov. 15, 203 (2020). https://doi.org/10.1080/17460441.2020.1696768

    Article  CAS  PubMed  Google Scholar 

  11. N. Kerru, V.H.S.S. Bhaskaruni, R. Kishore, S. Maddila, S.B. Jonnalagadda, Lett. Drug Des. Discov. 15, 118 (2018). https://doi.org/10.2174/1570180814666170710161844

    Article  CAS  Google Scholar 

  12. Y.D. Duan, Y.Y. Jiang, F.X. Guo, L.X. Chen, L.L. Xu, W. Zhang, B. Liu, Fitoterapia 135, 114 (2019). https://doi.org/10.1016/j.fitote.2019.04.012

    Article  CAS  PubMed  Google Scholar 

  13. F.M. Wunsch, B. Wünsch, F.A. Bernal, T.J. Schmidt, Molecules 26, 5249 (2021). https://doi.org/10.3390/molecules26175249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. C. Hu, L. Jiang, L. Tang, M. Zhang, R. Sheng, Bioorg. Med. Chem. (2021). https://doi.org/10.1021/jm800869t

    Article  PubMed  PubMed Central  Google Scholar 

  15. N.A. Farag, S.R. Mohamed, G.A. Soliman, Bioorg. Med. Chem. 16, 9009 (2008). https://doi.org/10.1016/j.bmc.2008.08.039

    Article  CAS  PubMed  Google Scholar 

  16. P. Lerdsirisuk, C. Maicheen, J. Ungwitayatorn, Bioorg. Chem. 57, 142 (2014). https://doi.org/10.1016/j.bioorg.2014.10.006

    Article  CAS  PubMed  Google Scholar 

  17. B. Gopishetty, S. Hazeldine, S. Santra, M. Johnson, G. Modi, S. Ali, J. Zhen, M. Reith, A. Dutta, F J. Med. Chem. 54, 2924 (2011). https://doi.org/10.1021/jm200020a

    Article  CAS  Google Scholar 

  18. L.Y. Zeng, B. Xi, K. Huang, J. Bi, L. Wei, C. Cai, S. Liu, ACS Comb Sci. 21, 656 (2019). https://doi.org/10.1021/acscombsci.9b00050

    Article  CAS  PubMed  Google Scholar 

  19. A.R. Saundane, K. Vijaykumar, A.V. Vaijinath, Bioorg. Med. Chem. Lett. 23, 1978 (2013). https://doi.org/10.1016/j.bmcl.2013.02.036

    Article  CAS  PubMed  Google Scholar 

  20. K. Nicole, C. Gianluca, M. Domenico, L. Erik, P. Sabrina, V.C. Carlo, H. Hans-Ulrich, A. Carmen, R.N. Francisco, S. Dirk, W. Bernhard, Eur. J. Med. Chem. 219, 113443 (2021). https://doi.org/10.1016/j.ejmech.2021.113443

    Article  CAS  Google Scholar 

  21. B. Saeed, B. Morteza, S.A. Masoumeh, Syn. Commun. 37, 1097 (2007)

    Article  Google Scholar 

  22. S.F. Hojati, N.M. Eghbali, S. Mohamadi, T. Ghorbani, Org. Prep. Proced. Int. 50, 408 (2018). https://doi.org/10.1080/00304948.2018.1468982

    Article  CAS  Google Scholar 

  23. K. Khandan-Barani, M. Kangani, M. Mirbaluchzehi, Z. Siroos, Inorg. Nano-Met. Chem. 47, 751 (2017). https://doi.org/10.1080/15533174.2016.1212233

    Article  CAS  Google Scholar 

  24. M. Aghaei-Hashjin, A. Yahyazadeh, E. Abbaspour-Gilandeh, RSC Adv. 11, 23491 (2021). https://doi.org/10.1039/D1RA04381A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. S. Saneinezhad, L. Mohammadi, V. Zadsirjan, F.F. Bamoharram, M.M. Heravi, Sci. Rep. 10, 1 (2020). https://doi.org/10.1038/s41598-020-70738-z

    Article  CAS  Google Scholar 

  26. R. Rahnamafa, L. Moradi, M. Khoobi, Res. Chem. Intermed. 46, 2109 (2020). https://doi.org/10.1007/s11164-020-04081-3

    Article  CAS  Google Scholar 

  27. P.B. Hiremath, K. Kantharaju, ChemistrySelect 5, 1896 (2020). https://doi.org/10.1002/slct.201904336

    Article  CAS  Google Scholar 

  28. D. Tahmassebi, J.E. Blevins, J.S. Gerardot. Appl. Organomet. Chem. 33, e4807 (2019). https://doi.org/10.1002/aoc.4807

  29. A. Jamshidi, B. Maleki, F.M. Zonoz, R. Tayebee, Mater. Chem. Phys. 209, 46 (2018). https://doi.org/10.1016/j.matchemphys.2018.01.070

    Article  CAS  Google Scholar 

  30. S.V.H.S. Bhaskaruni, K.K. Gangu, S. Maddila, S.B. Jonnalagadda, Chem. Rec. 19, 1793 (2019). https://doi.org/10.1002/tcr.201800077

    Article  CAS  PubMed  Google Scholar 

  31. H. Ganja, A.R. Robert, P. Lavanya, S. Chinnam, S. Maddila, S.B. Jonnalagadda, Inorg. Chem. Commun. 114, 107 (2020). https://doi.org/10.1016/j.inoche.2020.107807

    Article  CAS  Google Scholar 

  32. S.V.H.S. Bhaskaruni, S. Maddila, K.K. Gangu, S.B. Jonnalagadda, Arab. J. Chem. 13, 1142 (2020). https://doi.org/10.1016/j.arabjc.2017.09.016

    Article  CAS  Google Scholar 

  33. S. Harikrishna, A.R. Robert, H. Ganja, S. Maddila, S.B. Jonnalagadda. Appl. Organomet. Chem. 34, e5796 (2020). https://doi.org/10.1002/aoc.5796

  34. S.N. Maddila, S. Maddila, N. Kerru, S.V.H.S. Bhaskaruni, S.B. Jonnalagadda, ChemistrySelect 5, 1786 (2020). https://doi.org/10.1002/slct.201901867

    Article  CAS  Google Scholar 

  35. S.V.H.S. Bhaskaruni, S. Maddila, W.E. Van Zyl, S.B. Jonnalagadda, Catal. Commun. 100, 24 (2017). https://doi.org/10.1016/j.catcom.2017.06.023

    Article  CAS  Google Scholar 

  36. S. Shabalala, S. Maddila, W.E. Van Zyl, S.B. Jonnalagadda, ACS-Ind. Eng. Chem. Res. 56, 11372 (2017). https://doi.org/10.1016/j.psep.2022.01.054

    Article  CAS  Google Scholar 

  37. K.K. Gangu, S. Maddila, S.N. Maddila, S.B. Jonnalagadda, RSC Adv. 7, 423 (2017). https://doi.org/10.1039/C6RA25372E

    Article  CAS  Google Scholar 

  38. X. Pan, F. Jiao, D. Miao, X. Bao, Chem Rev. 121, 6588 (2021). https://doi.org/10.1021/acs.chemrev.0c01012

    Article  CAS  PubMed  Google Scholar 

  39. Q. Song, W.D. Wang, X. Hu, Z. Dong, Nanoscale 11, 21513 (2019). https://doi.org/10.1039/C9NR08483E

    Article  CAS  PubMed  Google Scholar 

  40. W. Wang, M. Xu, X. Xu, W. Zhou, Z. Shao, Angew Chem. Int. Ed. Engl. 59, 136 (2020). https://doi.org/10.1002/anie.201900292

    Article  CAS  PubMed  Google Scholar 

  41. C. Theunissen, M.A. Ashley, T. Rovis, J. Am. Chem. Soc. 141, 6791 (2019). https://doi.org/10.1021/jacs.8b13663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. S. Chen, A.M. Abdel-Mageed, D. Li, J. Bansmann, S. Cisneros, J. Biskupek, W. Huang, R.J. Behm, Angew Chem. Int. Ed. Engl. 58, 10732 (2019). https://doi.org/10.1002/anie.201903882

    Article  CAS  PubMed  Google Scholar 

  43. R.L. Arevalo, S.M. Aspera, M.C. SisonEscano, H. Nakanishi, H. Kasai, ACS Omega 2, 1295 (2017). https://doi.org/10.1021/acsomega.6b00462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. S. Maddila, S. Gorle, S. Shabalala, O. Oyetade, S.N. Maddila, P. Lavanya, S.B. Jonnalagadda, Arab. J. Chem. 12, 671 (2019). https://doi.org/10.1016/j.arabjc.2016.04.016

    Article  CAS  Google Scholar 

  45. M.R. Khumalo, S.N. Maddila, S. Maddila, S.B. Jonnalagadda, ChemistrySelect 4, 12503 (2019). https://doi.org/10.1002/slct.201903222

    Article  CAS  Google Scholar 

  46. M.R. Khumalo, S.N. Maddila, S. Maddila, S.B. Jonnalagadda, RSC Adv. 9, 30768 (2019). https://doi.org/10.1039/C9RA04604F

    Article  Google Scholar 

  47. N. Kerru, L. Gummidi, S. Maddila, K.K. Gangu, S.B. Jonnalagadda, Molecules 25, 1909 (2020). https://doi.org/10.3390/molecules25081909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. S. Gorle, K.K. Gangu, S. Maddila, S.B. Jonnalagadda, Chem. Data Collect. 28, 100 (2020). https://doi.org/10.1016/j.cdc.2020.100471

    Article  CAS  Google Scholar 

  49. D. Zhenhua, L. Xiaohua, F. Juhua, W. Min, L. Lili, F. Xiaoming, Eur. J. Org. Chem. 1, 137 (2011). https://doi.org/10.1002/ejoc.201001151

    Article  CAS  Google Scholar 

  50. B. Saeed, B. Morteza, M. Sheikh-Ahmadi, S. Hekmat, P. Salehi, Syn. Commun. 37(7), 1097 (2007). https://doi.org/10.1080/00397910701196579

    Article  CAS  Google Scholar 

  51. L. Rong, X. Li, H. Wang, D. Shi, S. Tu, Q. Zhuang, Synth. Commun. 36, 2363 (2006). https://doi.org/10.1080/003979106006402302363

    Article  CAS  Google Scholar 

  52. W. Xiang-Shan, S. Da-Qing, T. Shu-Jiang, Y. Chang-Sheng, Synth. Commun. 33(1), 119 (2003). https://doi.org/10.1081/SCC-120015567

    Article  CAS  Google Scholar 

  53. L. Ji-Tai, X. Wen-Zhi, Y. Li-Chao, L. Tong-Shuang, Synth. Commun. 34(24), 4565 (2004). https://doi.org/10.1081/SCC-200043233

    Article  CAS  Google Scholar 

  54. R. Naresh, A. Santhi, D. Derong, A. Hadi, Z. John, C.-G.J. Heterocyc, Chemistry 54(1), 677 (2017). https://doi.org/10.1002/jhet.2641

    Article  CAS  Google Scholar 

  55. H. Alireza, S. Mohsen, G. Nooshin, Z. Abdolkarim, D.M. Mohammad, Appl. Catal. A Gen. 402(1–2), 11 (2011). https://doi.org/10.1016/j.apcata.2011.04.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the Andhra University, and GITAM Deemed to be University, Visakhapatnam, India, for instrumentation, research, and financial support.

Funding

This work received no fund from any source.

Author information

Authors and Affiliations

Authors

Contributions

BA performed experimental studies and conceptualization; ARR performed writing—original draft and conceptualization; MMKK provided facilities for the spectral characterization; RM provided facilities for the catalyst characterization; PM performed validation, data curation, and formal analysis; SM: performed conceptualization, project administration, writing—original draft, supervision and funding acquisition; SBJ performed review and editing.

Corresponding author

Correspondence to Suresh Maddila.

Ethics declarations

Competing interests

The authors declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5515 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apparao, B., Robert, A.R., Kumar, M.M.K. et al. Design of novel 2-amino-pyrans via a green and facile one-pot multicomponent protocol using RuO2/Al2O3 as reusable catalyst. Res Chem Intermed 49, 1043–1058 (2023). https://doi.org/10.1007/s11164-022-04949-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04949-6

Keywords

Navigation