Skip to main content
Log in

Bread waste in the form of CoFe2O4@TBW catalyst was used as a green biocatalyst to synthesize pyranopyrazole and tetraketone derivatives

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Bread scraps with transition metal oxide spinels were utilized to synthesize core–shell magnetic nanocatalyst. The prepared heterogeneous catalyst was characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). This magnetic nanocatalyst opens up a new avenue to introduce a very useful and efficient catalytic system for the one-pot synthesis of tetraketone derivatives via Knoevenagel-Micheal reaction of 1,3 cyclohexanedione and benzaldehyde in ethanol as a green solvent at 50 °C, and one-pot four-component reaction of benzaldehyde, dimedone, ethyl acetoacetate, and hydrazine hydrate via tandem Knoevenagel-Micheal reaction for the synthesis of dihydropyrano[2,3-c] pyrazole derivatives in ethanol. The pharmaceutical properties of dihydropyrano[2,3-c] pyrazole and tetraketones make them both essential compounds. Moreover, the recyclability of the new heterogeneous magnetic catalyst does not significantly deteriorate its catalytic activity, and it can be easily recovered by an external magnet and reused ten times without significant loss of activity, making it environmentally friendly and economically feasible to perform the desired transformations. NBO calculations were carried out at the level of B3LYP/6–311 +  + G (d, p) to obtain the atoms' natural charge data to justify the reaction's mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Fig. 10
Scheme 2
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its Supplementary material.

References

  1. L. Chen, Y. Dai, H. Hou, W. Wang, X. Ding, H. Zhang, X. Li, H. Dong, Food Hydrocoll. 115, 106606 (2021)

    Article  CAS  Google Scholar 

  2. R.N. Baig, R.S. Varma, Chem. comm. 49, 752 (2013)

    Article  CAS  PubMed  Google Scholar 

  3. A.H. Cahyana, A.R. Liandi, M. Maghdalena, R.T. Yunarti, T.P. Wendari, Ceram. Int. 48, 18316 (2022)

    Article  CAS  Google Scholar 

  4. A.H. Cahyana, A.R. Liandi, Y. Yulizar, Y. Romdoni, T.P. Wendari, Ceram. Int. 47, 21373 (2021)

    Article  CAS  Google Scholar 

  5. A.R. Liandi, A.H. Cahyana, R.T. Yunarti, T.P. Wendari, Ceram. Int. 48, 20266 (2022)

    Article  CAS  Google Scholar 

  6. S.B. Kalidindi, B.R. Jagirdar, Chem. Sus. Chem. 5, 65 (2012)

    Article  CAS  Google Scholar 

  7. R. Narayanan, Green Chem. Lett. Rev 5, 707 (2012)

    Article  CAS  Google Scholar 

  8. Y. Xu, H. Zhang, X. Duan, Y. Ding, Mater. Chem. Phys. 114, 795 (2009)

    Article  CAS  Google Scholar 

  9. Z. Zi, Y. Sun, X. Zhu, Z. Yang, J. Dai, W. Song, J. Magn. Magn. Mater. 321, 1251 (2009)

    Article  CAS  Google Scholar 

  10. D.S. Mathew, R.-S. Juang, J. Chem. Eng. 129, 51 (2007)

    Article  CAS  Google Scholar 

  11. Q. Yang, H. Choi, S.R. Al-Abed, D.D. Dionysiou, Appl. Catal. B. 88, 462 (2009)

    Article  CAS  Google Scholar 

  12. R. Redon, N.G.G. Pena, F.R. Crescencio, Recent Pat. Nanotechnol. 8, 31 (2014)

    Article  CAS  PubMed  Google Scholar 

  13. W. Zhu, Z. Chen, Y. Pan, R. Dai, Y. Wu, Z. Zhuang, D. Wang, Q. Peng, C. Chen, Y. Li, Adv. Mater. 31, 1800426 (2019)

    Article  Google Scholar 

  14. J.M. Khurana, K. Vij, J. Chem. Sci. 124, 907 (2012)

    Article  CAS  Google Scholar 

  15. Z. Ren, W. Cao, W. Tong, X. Jing, Synth. Commun. 32, 1947 (2002)

    Article  CAS  Google Scholar 

  16. F. Karimi Rad, F.K. Behbahani, Curr. Org. Synth. 14, 22 (2017)

    Article  Google Scholar 

  17. P. Zhang, Y.-D. Yu, Z.-H. Zhang, Synth. Commun. 38, 4474 (2008)

    Article  CAS  Google Scholar 

  18. A.S. Patki, K.N. Patil, S. Kusuma, D.B. Muley, A.H. Jadhav, Res. Chem. Intermed. 47, 2751 (2021)

    Article  CAS  Google Scholar 

  19. S.R. Mathapati, K.N. Patil, S.S. Mathakari, A.W. Suryawanshi, A.H. Jadhav, Phosphorus Sulfur Silicon Relat. Elem. 196, 538 (2021)

    Article  CAS  Google Scholar 

  20. S.R. Mathapati, R.C. Alange, C. Sherin Mol, S.S. Bhande, A.H. Jadhav, Res. Chem. Intermed. 48, 4901 (2022)

    Article  CAS  Google Scholar 

  21. M.B. Swami, A.H. Jadhav, S.R. Mathpati, H.G. Ghuge, S.G. Patil, Res. Chem. Intermed. 43, 2033 (2017)

    Article  CAS  Google Scholar 

  22. F. Mohamadpour, J. Chem. Sci. 132, 1 (2020)

    Article  Google Scholar 

  23. A.R. Moosavi-Zare, M.A. Zolfigol, A. Mousavi-Tashar, Res. Chem. Intermed. 42, 7305 (2016)

    Article  CAS  Google Scholar 

  24. S.R. Attar, B. Shinde, S.B. Kamble, Res. Chem. Intermed. 46, 4723 (2020)

    Article  CAS  Google Scholar 

  25. B. Maleki, M. Raei, H. Alinezhad, R. Tayebee, A. Sedrpoushan, Org. Prep. Proced. Int. 50, 288 (2018)

    Article  CAS  Google Scholar 

  26. D. Kumar, J.S. Sandhu, Synth. Commun. 40, 510 (2010)

    Article  CAS  Google Scholar 

  27. M. Saha, J. Dey, K. Ismail, A.K. Pal, Lett. Org. Chem. 8, 554 (2011)

    Article  CAS  Google Scholar 

  28. M. Fallah, H. Tajbakhsh, A. Vahedi, Bekhradnia. Res. Chem. Intermed. 43, 29 (2017)

    Article  CAS  Google Scholar 

  29. D. Shi, Y. Wang, Z. Lu, G. Dai, Synth. Commun. 30, 707 (2000)

    Article  Google Scholar 

  30. S. Yokote, S. Nishikawa, K. Shibuya, K. Hisano, H. Nishino, Tetrahedron 76, 131165 (2020)

    Article  CAS  Google Scholar 

  31. H. Hassanzadeh-Afruzi, F. Dogari, A. Esmailzadeh, Maleki. Appl. Organomet. Chem. 35, e6363 (2021)

    CAS  Google Scholar 

  32. R.J. Cremlyn, A.G. Osborne, J.F. Warmsley, Spectrochim. Acta - A: Mol. Biomol. 52, 1423 (1996)

    Article  Google Scholar 

  33. Y. Fu, B. Fan, H. Chen, H. Huang, Y. Hu, Bioorg. Chem. 80, 555 (2018)

    Article  CAS  PubMed  Google Scholar 

  34. J. Safaei-Ghomi, H. Shahbazi-Alavi, E. Heidari-Baghbahadorani, J. Chem. Res. 39, 410 (2015)

    Article  CAS  Google Scholar 

  35. S.N. Maddila, S. Maddila, W.E. van Zyl, S.B. Jonnalagadda, Res. Chem. Intermed. 43, 4313 (2017)

    Article  CAS  Google Scholar 

  36. M. Nikoorazm, B. Tahmasbi, S. Gholami, P. Moradi, Appl. Organomet. Chem. 34, e5919 (2020)

    CAS  Google Scholar 

  37. N. Salehi, B.B.F. Mirjalili, Org. Prep. Proced. Int. 50, 578 (2018)

    Article  CAS  Google Scholar 

  38. F. Abdel-Latif, M. Mashaly, R. Mekheimer, T. Abdel-Aleem, Z. Naturforsch. B. 48, 817 (1993)

  39. D. Thakur, H.S. Sohal, Eur. J. Mol. Clin. Med. 7, 4498 (2020)

    Google Scholar 

  40. B. Ardiansah, Int. J. Chemtech Res. 12, 273 (2019)

    CAS  Google Scholar 

  41. M. Zabihzadeh, F. Shirini, H. Tajik, N. Daneshvar, Polycycl. Aromat. Compd. 41, 1972 (2021)

    Article  CAS  Google Scholar 

  42. S. Srivastava, ChemistrySelect 5, 799 (2020)

    Article  CAS  Google Scholar 

  43. S. Arora, G. Joshi, S. Kalra, A.A. Wani, P.V. Bharatam, P. Kumar, R. Kumar, ACS Omega 4, 4604 (2019)

    Article  CAS  Google Scholar 

  44. A. Ziyaei Halimehjani, V. Barati, M. Karimi, Synth. Commun. 49, 724 (2019)

    Article  CAS  Google Scholar 

  45. B.M. Sapkal, P.K. Labhane, J.R. Satam, Res. Chem. Intermed. 43, 4967 (2017)

    Article  CAS  Google Scholar 

Download references

Funding

We gratefully acknowledge the funding support received for this project from the Sharif University of Technology (SUT), Islamic Republic of Iran.

Author information

Authors and Affiliations

Authors

Contributions

FMM contributed to project administration, supervision, conceptualization, validation, resources, and funding acquisition. SA contributed to methodology, formal analysis, funding acquisition, visualization, data curation, software, and writing—original draft. MD contributed to data curation, formal analysis, investigation, methodology, writing—original draft, validation, and conceptualization. HM contributed to methodology, formal analysis, and validation. ZD contributed to data curation, formal analysis, conceptualization, investigation, methodology, writing—original draft, visualization, and writing—review and editing.

Corresponding author

Correspondence to Firouz Matloubi Moghaddam.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9061 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghaddam, F.M., Aghili, S., Daneshfar, M. et al. Bread waste in the form of CoFe2O4@TBW catalyst was used as a green biocatalyst to synthesize pyranopyrazole and tetraketone derivatives. Res Chem Intermed 49, 1507–1543 (2023). https://doi.org/10.1007/s11164-022-04934-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04934-z

Keywords

Navigation