Skip to main content
Log in

Treatment of actual cyanide gold extraction wastewater by persulfate oxidation and its reaction mechanism

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Using persulfate advanced oxidation process to treat industrial cyanide wastewater, the effects of persulfate concentration, temperature, pH, and reaction time on the removal extent of pollutants were examined, and the process reaction mechanism was studied. X-ray diffraction and electron paramagnetic resonance spectroscopy (EPR) were used to analyze and characterize the precipitates and active free radicals produced during the oxidation process. Studies have shown that the removal extent of total cyanide and free cyanide increases with the increase in persulfate concentration and reaction time and shows a trend of first increasing and then decreasing with the increase in pH. Under room temperature, when the persulfate concentration was 0.0210 mol/L, pH = 10, and the reaction time was 20 min, the removal extents of total cyanide, free cyanide, copper, and zinc in cyanide wastewater were 83.09%, 100%, 90.27%, and 80.47%, respectively. EPR analysis confirmed the existence of SO4•–, OH, and O2•– active free radicals, with O2•– originated from the dissolved oxygen in the cyanide wastewater. The persulfate oxidation process contained direct persulfate oxidation and active radical oxidation of Cu+ activation persulfate. S2O82– direct oxidation of cyanide accounts for 63.93%, and S2O82– mainly exists in the water phase in the form of SO42–. The indirect oxidation by SO4•–, OH, and O2•– accounted for 16.44%, 5.34%, and 14.29%, respectively. Persulfate oxidation could effectively treat industrial cyanide wastewater, and this study has important theoretical and practical significance for the gold smelting industry to tap the potential to recover certain metals, increase efficiency, and support the comprehensive utilization of resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Y. Pan, Y. Zhang, Y. Huang, Y. Jia, L. Chen, Chem. Eng. J. 428, 131257 (2022)

    Article  CAS  Google Scholar 

  2. Y. Pan, Y. Zhang, Y. Huang, Y. Jia, L. Chen, H. Cui, J. Hazard. Mater. 416, 125802 (2021)

    Article  CAS  PubMed  Google Scholar 

  3. Y. Song, Y. Li, X. He, X. Zeng, M. Zhou, G. Liu, J. Zhou, Chemosphere 291, 3 (2022)

    Google Scholar 

  4. N. Yin, Y. Song, S. Lei, J. Zhou, Chem. Eng. (Chin) 47, 09 (2019)

    Google Scholar 

  5. L. Zhao, Y. Song, X. Zeng, Y. Li, X. Lan, Chem. Eng. (Chin) 14, 12 (2020)

    Google Scholar 

  6. M. Zhang, Z. Feng, J. Wang, Y. Wang, S. Shi, Z. Sun, H. Cao, Chem. Ind. Eng. 36, 01 (2019)

    Google Scholar 

  7. Y. Wang, S. Tian, D. Cao, Y. Li, Y. Wang, M. Qiao, X. Zhao, Sep. Purif. Technol. 188, 119 (2017)

    Article  CAS  Google Scholar 

  8. A. Ghauch, A.M. Tuqan, Chem. Eng. J. 183, 162 (2012)

    Article  CAS  Google Scholar 

  9. A. Ghauch, A.M. Tuqan, N. Kibbi, Chem. Eng. J. 279, 861 (2015)

    Article  CAS  Google Scholar 

  10. S. Al Hakim, A. Baalbaki, O. Tantawi, A. Ghauch, RSC Adv. 9, 57 (2019)

    Article  Google Scholar 

  11. R. El Asmar, A. Baalbaki, Z.A. Khalil, S. Naim, A. Bejjani, A. Ghauch, Chem. Eng. J. 405, 126701 (2021)

    Article  Google Scholar 

  12. A. Baalbaki, N.Z. Eddine, S. Jaber, M. Amasha, A. Ghauch, Talanta 178, 237 (2018)

    Article  CAS  PubMed  Google Scholar 

  13. M. Amasha, A. Baalbaki, S. Al Hakim, R. El Asmar, A. Ghauch, J. Adv. Oxid. Technol. 21, 1 (2018)

    Article  Google Scholar 

  14. A. Ghauch, A. Baalbaki, M. Amasha, R. El Asmar, O. Tantawi, Chem. Eng. J. 317, 1012 (2017)

    Article  CAS  Google Scholar 

  15. S. Al Hakim, S. Jaber, N.Z. Eddine, A. Baalbaki, A. Ghauch, Chem. Eng. J. 380, 122478 (2020)

    Article  CAS  Google Scholar 

  16. Q. Wang, Y. Li, Y. Liu, J. Ren, Y. Zhang, G. Qu, T. Wang, J. Clean. Prod. 314, 128119 (2021)

    Article  CAS  Google Scholar 

  17. X. Zhang, M. Feng, R. Qu, H. Liu, L. Wang, Z. Wang, Chem. Eng. J. 301, 1 (2016)

    Article  Google Scholar 

  18. S. Naim, A. Ghauch, Chem. Eng. J. 288, 276 (2016)

    Article  CAS  Google Scholar 

  19. G. Ayoub, A. Ghauch, Chem. Eng. J. 256, 280 (2014)

    Article  CAS  Google Scholar 

  20. A. Ghauch, G. Ayoub, S. Naim, Chem. Eng. J. 228, 1168 (2013)

    Article  CAS  Google Scholar 

  21. A. Ghauch, A.M. Tuqan, N. Kibbi, Chem. Eng. J. 197, 483 (2012)

    Article  CAS  Google Scholar 

  22. W. Wang, L. Wang, K. Wang, T. Zhang, Y. Sun, W. Li, J. Clean. Prod. 322, 111134 (2021)

    CAS  Google Scholar 

  23. Y. Wang, X. Yan, T. Ai, Z. Li, Y. Niu, Environ. Sci. 43, 04 (2022)

    Google Scholar 

  24. X. Sun, Y. Zhao, Y. Liu, D. Fu, J. Saf. Environ. 18, 04 (2018)

    Google Scholar 

  25. H. Ibargüen-López, B. López-Balanta, L. Betancourt-Buitrago, E.A. Serna-Galvis, R.A. Torres-Palma, F. Machuca-Martínez, S.F. Castilla-Acevedo, J. Environ. Chem. Eng. 9, 5 (2021)

    Article  Google Scholar 

  26. C. Liang, C.F. Huang, N. Mohanty, R.M. Kurakalva, Chemosphere 73, 9 (2008)

    Google Scholar 

  27. J. Zhou, L. Wang, H. Zhang, Y. Song, X. Dang, Q. Zhang, Chin. J. Rare. 39, 10 (2015)

    Google Scholar 

  28. M.K. Chegeni, A. Shahedi, A.K. Darban, A. Jamshidi-Zanjani, M. Homaee, J. Water. Process. Eng. 43, 102284 (2021)

    Article  Google Scholar 

  29. L.A. Betancourt-Buitrago, A. Hernandez-Ramirez, J.A. Colina-Marquez, C.F. Bustillo-Lecompte, L. Rehmann, F. Machuca-Martinez, Processes 7, 4 (2019)

    Article  Google Scholar 

  30. G. Fang, C. Liu, J. Gao, D.D. Dionysiou, D. Zhou, Environ. Sci. Technol. 49, 9 (2015)

    Google Scholar 

  31. M.M. Botz, T.I. Mudder and A.U. Akcil, in Dev Miner Process (2005), pp. 672

  32. W. Hayat, Y. Zhang, I. Hussain, X. Du, M. Du, C. Yao, S. Huang, F. Si, Chem. Eng. J. 370, 1169 (2019)

    Article  CAS  Google Scholar 

  33. P. Neta, R.E. Huie, J. Phys. Chem. Ref. Data. 17, 3 (1987)

    Google Scholar 

  34. C. Wang, R. Huang, R. Sun, J. Yang, M. Sillanpää, J. Environ. Chem. Eng. 9, 5 (2021)

    Google Scholar 

  35. H. Zhang, Y. Zhang, T. Qiao, S. Hu, J. Liu, R. Zhu, K. Yang, S. Li, L. Zhang, Sep. Purif. Technol. 303, 122194 (2022)

    Article  Google Scholar 

  36. L. Yulan, J. H. Ins. Techno. N. Sci. (2016)

  37. L. Ying, Q. Luming, C. Chonglong, C. Chongzhe, J. Xiangzheng, Gold 6, 43 (2022)

    Google Scholar 

Download references

Funding

The authors acknowledge the financial support provided by the National Natural Science Foundation of China (51774227).

Author information

Authors and Affiliations

Authors

Contributions

Long Liao and Yonghui Song proposed experimental ideas, conducted experiments and data processing, and completed the writing of manuscripts and the approval of the final version, Panpan Zhang, Yifan Li, Jin Bao and Jiameng Zhou provided some help in experiments and data processing, and provided valuable comments on manuscript writing.

Corresponding author

Correspondence to Yonghui Song.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, L., Song, Y., Zhang, P. et al. Treatment of actual cyanide gold extraction wastewater by persulfate oxidation and its reaction mechanism. Res Chem Intermed 49, 3705–3721 (2023). https://doi.org/10.1007/s11164-022-04928-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04928-x

Keywords

Navigation