Skip to main content

Advertisement

Log in

Thermal steam methane reforming over bimetal-loaded hemp-derived activated carbon-based catalyst for hydrogen production

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Ni-Co loaded hemp-derived activated carbon (AC) catalyst is synthesized by the wet impregnation method for steam methane reforming (SMR) for hydrogen production. The monometallic and bimetallic metal (Co, Ni) catalysts were synthesized over activated AC with 5 wt% by the wet impregnation method and characterized by using various techniques. XRD and SEM results suggested that the catalysts with small metal crystallites promote a better dispersion of highly porous AC.The catalytic assessment of all synthesized catalysts for SMR was carried out in a thermal fixed bed reactor at 750 °C, WHSV 2000 mL CH4 g−1 h−1, and S/C of 2.0. The catalytic results showed that among all the investigated samples, monometallic cobalt catalyst (5% Co@AC) exhibited the best results in terms of CH4 conversion (97.17%) and H2 production (66.08%). While the 5% Ni@AC and 5% NiCo@AC show a CH4 conversion of 90.28% and 92.52%, respectively, whereas the H2 production was 61.02% and 65.89%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

References

  1. D.E. Morkovkin et al., Formation of a national environmental strategy for the fuel and energy complex. IOP conference series: materials science and engineering, (IOP Publishing, 2019)

  2. J. Zhang, J. Zheng, W. Yang, Chem. Eng. J. 403, 126368 (2021)

    CAS  Google Scholar 

  3. L. Oznobikhina, E. Pirunova, Enterprises of the fuel and energy complex-the sphere of high risks and objects of increased industrial danger. IOP conference series: earth and environmental science, (IOP Publishing, 2021)

  4. M. Kamran, M.R. Fazal, M. Mudassar, Renew. Energy 146, 543 (2020)

    Google Scholar 

  5. I. Waris, I. Hameed, Energy Effic. 13(8), 1653 (2020)

    Google Scholar 

  6. E. Papadis, G. Tsatsaronis, Energy 205, 118025 (2020)

    CAS  Google Scholar 

  7. N. Gao et al., Fuel 273, 117702 (2020)

    CAS  Google Scholar 

  8. A. Boyano et al., J. Clean. Prod. 20(1), 152 (2012)

    CAS  Google Scholar 

  9. I. Hanif et al., Energy 171, 493 (2019)

    Google Scholar 

  10. C. Acar, I. Dincer, G.F. Naterer, J. Power Sources 331, 189 (2016)

    CAS  Google Scholar 

  11. T. Capurso et al., Energy Convers. Manage. 251, 114898 (2022)

    CAS  Google Scholar 

  12. W. Liu et al., Int. J. Hydrogen Energy 46(17), 10548 (2021)

    CAS  Google Scholar 

  13. M. Klell, in Storage of hydrogen in the pure form, Handbook of hydrogen storage: new materials for future energy storage, (2010), p. 1

  14. S. Saeidi et al., J. Ind. Eng. Chem. 49, 1 (2017)

    CAS  Google Scholar 

  15. International Energy Agency: IEA P., Global hydrogen review, (2021). https://www.iea.org/reports/global-hydrogen-review-2021. Accessed 25 April 2022

  16. F. Safari, I. Dincer, Energy Convers. Manage. 205, 112182 (2020)

    CAS  Google Scholar 

  17. X. Yang, S. Wang, Y. He, Renew. Sustain. Energy Rev. 154, 111832 (2022)

    CAS  Google Scholar 

  18. Y. Chen et al., Energy Technol. 8(8), 1900750 (2020)

    CAS  Google Scholar 

  19. X. Cai, Y.H. Hu, Energy Sci. Eng. 7(1), 4 (2019)

    CAS  Google Scholar 

  20. Z. Jin et al., Science 367(6474), 193 (2020)

    CAS  PubMed  Google Scholar 

  21. H.R. Shahhosseini et al., J. Clean. Prod. 180, 655 (2018)

    CAS  Google Scholar 

  22. M. Pajak et al., Int. J. Hydrogen Energy 46, 20183 (2020)

    Google Scholar 

  23. H.-G. Park et al., Catalysts 9(7), 615 (2019)

    CAS  Google Scholar 

  24. A.F. Lucredio, E.M. Assaf, J. Power Sources 159(1), 667 (2006)

    CAS  Google Scholar 

  25. M. Nazari, S.M. Alavi, Int. J. Hydrogen Energy 45(1), 691 (2020)

    CAS  Google Scholar 

  26. Y. Zhang et al., Catal. Today 256, 130 (2015)

    CAS  Google Scholar 

  27. K.S. Park, M.H. Jeong, J.W. Bae, Catalysts 10(4), 461 (2020)

    CAS  Google Scholar 

  28. S. Sohrabi, A. Irankhah, Int. J. Hydrogen Energy 46(24), 12846 (2021)

    CAS  Google Scholar 

  29. A. Etminan, S. Sadrnezhaad, Fuel 317, 122411 (2022)

    CAS  Google Scholar 

  30. J. Ren et al., Chem. Eng. J. 429, 132316 (2022)

    CAS  Google Scholar 

  31. I. Izhab, M. Asmadi, N.A.S. Amin, Int. J. Hydrogen Energy 46, 24754 (2020)

    Google Scholar 

  32. Y.A. Alhamed, JKAU Eng. Sci. 17(2), 5 (2006)

    Google Scholar 

  33. X. Wang et al., Chemosphere 287, 131995 (2022)

    CAS  PubMed  Google Scholar 

  34. M. Iwanow et al., Beilstein J. Org. Chem. 16(1), 1188 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. M.S.U. Rehman et al., Renew. Sustain. Energy Rev. 18, 154 (2013)

    Google Scholar 

  36. L. Mo et al., BioResources 15(3), 4996 (2020)

    CAS  Google Scholar 

  37. W. Sun et al., Carbon 103, 181 (2016)

    CAS  Google Scholar 

  38. Z. Guan et al., Nanoscale Res. Lett. 14(1), 1 (2019)

    CAS  Google Scholar 

  39. I. Lupul et al., J. Porous Mater. 22(1), 283 (2015)

    CAS  Google Scholar 

  40. M.A. Munawar et al., Fuel 285, 119107 (2021)

    Google Scholar 

  41. J. Raza et al., J. Environ. Chem. Eng. 9(5), 105816 (2021)

    CAS  Google Scholar 

  42. M. Ayesha et al., J. Environ. Chem. Eng. 10(3), 107651 (2022)

    CAS  Google Scholar 

  43. S.Z. Abbas, V. Dupont, T. Mahmud, Int. J. Hydrogen Energy 42(5), 2889 (2017)

    CAS  Google Scholar 

  44. C. Palmer et al., Nat. Catal. 3(1), 83 (2020)

    CAS  Google Scholar 

  45. Z. Hao et al., Fuel Process. Technol. 90(1), 113 (2009)

    CAS  Google Scholar 

  46. H.-C. Wu, Z. Rui, J.Y. Lin, J. Membr. Sci. 598, 117780 (2020)

    CAS  Google Scholar 

  47. E. Meloni et al., Int. J. Hydrogen Energy 46(26), 13729 (2021)

    CAS  Google Scholar 

  48. V. Palma et al., C 6(3), 52 (2020)

    CAS  Google Scholar 

  49. R. Fu et al., Langmuir 21(7), 2647 (2005)

    CAS  PubMed  Google Scholar 

  50. Z. Zhong et al., J. Phys. Chem. B 106(37), 9507 (2002)

    CAS  Google Scholar 

  51. K. Takanabe et al., J. Catal. 232(2), 268 (2005)

    CAS  Google Scholar 

  52. M.Z. Hossain et al., C 4(3), 38 (2018)

    Google Scholar 

  53. G.P. Glaspell, P.W. Jagodzinski, A. Manivannan, J. Phys. Chem. B 108(28), 9604 (2004)

    CAS  Google Scholar 

  54. R. Rajarao et al., Procedia Mater. Sci. 5, 69 (2014)

    CAS  Google Scholar 

  55. H.S.M. Yahya, T. Abbas, N.A.S. Amin, Int. J. Hydrogen Energy 46(48), 24632 (2021)

    CAS  Google Scholar 

  56. J. Han et al., J. Mater. Chem. A 3(41), 20607 (2015)

    CAS  Google Scholar 

  57. D. Li et al., Chem. Eng. J. 406, 126856 (2021)

    CAS  Google Scholar 

  58. N. Alotaibi et al., RSC Adv. 10(30), 17660 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  59. J. Kang et al., Chem. Eng. J. 275, 36 (2015)

    CAS  Google Scholar 

  60. C. Nethravathi et al., J. Phys. Chem. B 109(23), 11468 (2005)

    CAS  PubMed  Google Scholar 

  61. B. Shen et al., Fuel 235, 878 (2019)

    CAS  Google Scholar 

  62. I. Izhab, N.A.S. Amin, M. Asmadi, Int. J. Green Energy 14, 831 (2017)

    CAS  Google Scholar 

  63. S. Yakout, G.S. El-Deen, Arab. J. Chem. 9, S1155 (2016)

    CAS  Google Scholar 

  64. J. Zhang et al., Results Phys. 7, 1628 (2017)

    Google Scholar 

  65. Y. Wang et al., Ind. Crops Prod. 65, 216 (2015)

    CAS  Google Scholar 

  66. F. Siano et al., Molecules 24(1), 83 (2019)

    Google Scholar 

  67. D. Dai, M. Fan, Mater. Sci. Appl. 1(06), 336 (2010)

    CAS  Google Scholar 

  68. R. Yang et al., Microporous Mesoporous Mater. 158, 108 (2012)

    CAS  Google Scholar 

  69. F. Zhang et al., J. Power Sources 203, 250 (2012)

    CAS  Google Scholar 

  70. M. Hafeez et al., Mater. Res. Express 7(2), 025019 (2020)

    CAS  Google Scholar 

  71. C.I. Contescu et al., C 4(3), 51 (2018)

    Google Scholar 

  72. A. Mazhar et al., Energies 14(11), 3347 (2021)

    CAS  Google Scholar 

  73. M.A.U. Hasnain et al., Int. J. Hydrogen Energy 46(74), 36663 (2021)

    Google Scholar 

  74. M. Thommes et al., Pure Appl. Chem. 87(9–10), 1051 (2015)

    CAS  Google Scholar 

  75. A. Hidayu et al., Procedia Eng. 68, 379 (2013)

    CAS  Google Scholar 

  76. J. Saleem et al., Biomass Convers. Biorefinery 9(4), 775 (2019)

    CAS  Google Scholar 

  77. M.H. Amin, J. Tardio, S.K. Bhargava, Chem. Chall. Tomorrow 38(33), 14223 (2013)

    CAS  Google Scholar 

  78. I.U. Din, Why the BET surface area of a catalyst (Metal/supp) higher than the support? (2020)

  79. S.A. Ghungrud, K.D. Dewoolkar, P.D. Vaidya, Int. J. Hydrogen Energy 44(2), 694 (2019)

    CAS  Google Scholar 

  80. D. Aman et al., Mol. Catal. 452, 60 (2018)

    CAS  Google Scholar 

  81. H.S.M. Yahya, N.A.S. Amin, Int. J. Integr. Eng. 11(7), 209 (2019)

    Google Scholar 

  82. B. Tian et al., Energy 25, 122970 (2021)

    Google Scholar 

  83. L. Wang et al., Fuel 112, 654 (2013)

    CAS  Google Scholar 

  84. G. Słowik et al., Mater. Chem. Phys. 258, 123970 (2021)

    Google Scholar 

  85. S.M. Hashemnejad, M. Parvari, Chin. J. Catal. 32(1–2), 273 (2011)

    CAS  Google Scholar 

  86. M. Wang et al., Chem. Eng. J. 422, 129932 (2021)

    CAS  Google Scholar 

  87. H. Sohn, U.S. Ozkan, Energy Fuels 30(7), 5309 (2016)

    CAS  Google Scholar 

  88. L. Chibane, B. Djellouli, Int. J. Chem. Eng. Appl. 2(3), 147 (2011)

    CAS  Google Scholar 

  89. Q. Song et al., Ind. Eng. Chem. Res. 47(13), 4349 (2008)

    CAS  Google Scholar 

  90. J. Zhang et al., J. Phys. Chem. Solids 153, 110019 (2021)

    CAS  Google Scholar 

  91. J. Sreńscek-Nazzal et al., Materials 14(24), 7811 (2021)

    PubMed  PubMed Central  Google Scholar 

  92. P.R. Shukla et al., Appl. Catal. B 100(3–4), 529 (2010)

    CAS  Google Scholar 

  93. A.H. Javed et al., J. Environ. Chem. Eng. 9(6), 106887 (2021)

    CAS  Google Scholar 

  94. N. Naeem et al., Res. Chem. Intermed. 48(5), 2007 (2022)

    CAS  Google Scholar 

  95. M.Z. Stummann et al., Energy Fuels 33(12), 12387 (2019)

    CAS  Google Scholar 

  96. F. Adar, Spectroscopy 37(6), 11 (2022)

    CAS  Google Scholar 

  97. O. Beyssac, M. Lazzeri, EMU Notes Miner. 12(12), 415 (2012)

    Google Scholar 

  98. A. Kuižová et al., Polymers 13(22), 4023 (2021)

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was done by AHK, MA, and SS; methodology was done by RM, NN, and AHK; software was done by RM and NN; validation was done by MA, SS, and IUD; formal analysis was done by AHK and MA; investigation was done by RM and NN; resources were done by AHK, RL, and SS; data curation was done by RM; writing—original draft preparation were done by RM and AHK; writing—review and editing were done by IUD, MA, and SS; visualization was done by RL and SS; supervision was done by AHK; project administration was done by AHK. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Asif Hussain Khoja.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 220 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minhas, R., Khoja, A.H., Naeem, N. et al. Thermal steam methane reforming over bimetal-loaded hemp-derived activated carbon-based catalyst for hydrogen production. Res Chem Intermed 49, 3181–3203 (2023). https://doi.org/10.1007/s11164-022-04924-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04924-1

Keywords

Navigation