Skip to main content
Log in

Mineralization and photodegradation of oxytetracycline by UV/H2O2/Fe2+ and UV/PS/Fe2+ process: quantification of radicals

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this study, different oxidation processes UVA-365 nm (photolysis), UV–A/H2O2, UV–A/H2O2/Fe2+, UV–A/S2O8, and UV–A/S2O8/Fe2+ were investigated to compare removal rates efficiencies of Oxytetracycline (OTC). The role of the initial concentration of oxidants, as well as their inhibitory threshold regarding degradation and mineralization of OTC, was investigated at different pH. It was found that the initial pH solution had an important role in the photolysis of OTC, since in alkaline solutions, the degradation rate was faster than in acidic solutions, but in terms of mineralization yield, it did not exceed 3%. The addition of oxidants (H2O2, S2O8) had an impact on the mineralization, which reached 50% for the UV/S2O8 system. To improve mineralization, ferrous ions were added to UVA/oxidants, leading to 85% mineralization. Quantification of the main radicals involved in the oxidation process can help in the understanding of the free radical mechanism and their respective contributions to the degradation of OTC. The ability of Dimethylsulfoxide (DMSO) to act as a free radical scavenger was considered in UV/H2O2 and UV/H2O2/Fe2+ systems. The hydroxyl radicals can react directly with DMSO to produce a stable intermediate, methanesulfonate. Otherwise, isopropanol, tert-butanol and 1,4, benzoquinone were used as indirect methods to catch and to quantify the main radicals generated during UV/S2O8 and UV/S2O8/Fe2+processes. Finally, the results allowed to quantify the contributions of each radical involved in photo-oxidation for both systems, UV/H2O2 and UV/ S2O8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Not applicable.

References

  1. R. Bouchrit, “La gestion des ressources en eau en Algérie : situation, défis et apport de l’approche systémique,” ed. by univ-Tlemcen, (2008)

  2. J. Campo, A. Masiá, C. Blasco, Y. Picó, J. Hazard. Mater. 263, 146 (2013)

    Article  CAS  Google Scholar 

  3. N. Abu, P. Abdullah, Y. Farina, A. Aziz, Conference paper 760, 1 (2013)

    Google Scholar 

  4. Y. Liu, X. He, X. Duan, Y. Fu, D.D. Dionysiou, Chem. Eng. J. 276, 113 (2015)

    Article  CAS  Google Scholar 

  5. E. Carmona, V. Andreu, Y. Picó, Sci. Total Environ. 484, 53 (2014)

    Article  CAS  Google Scholar 

  6. N. Arabpour, A. Nezamzadeh-Ejhieh, Inst. Chem. Eng. 102, 431 (2016)

    CAS  Google Scholar 

  7. D. Fatta-Kassinos, M.I. Vasquez, K. Kümmerer, Chemosphere 85, 693 (2011)

    Article  CAS  Google Scholar 

  8. R. Banaschik, H. Jablonowski, P.J. Bednarski, J.F. Kolb, J. Hazard. Mater. 342, 651 (2018)

    Article  CAS  Google Scholar 

  9. B.A. Wols, C.H.M. Hofman-caris, Wat. Res. 46, 2815 (2012)

    Article  CAS  Google Scholar 

  10. M. Catalá, N.D. Morueco, A. Migens, R. Molina, F. Martínez, Y. Valcárcel, N. Mastroianni, M. López de Alda, D. Barceló, Y. Segura, Sci. Total Environ. 520, 198 (2015)

    Article  Google Scholar 

  11. X. He, S.P. Mezyk, I. Michael, D. Fatta-Kassinos, D.D. Dionysiou, J. Hazard. Mat. 279, 375 (2014)

    Article  CAS  Google Scholar 

  12. P. Neta, R.E. Huie, A. Ross, J. Phys. Chem. Ref. Data 17, 1027 (1988)

    Article  CAS  Google Scholar 

  13. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data 17, 513 (1988)

    Article  CAS  Google Scholar 

  14. R. Romero, D. Contreras, C. Segura, B. Schwederski, W. Kaim, Environ. Sci. Pollut. Res. 24, 6135 (2017)

    Article  CAS  Google Scholar 

  15. H. Tresp, M.U. Hammer, J. Winter, K. Weltmann, S. Reuter, J. Phy. D: App. Phy. 46, 435401 (2013)

    Article  Google Scholar 

  16. Z.R. Lin, L. Zhao, Y.H. Dong, Chemos. 141, 7 (2015)

    Article  CAS  Google Scholar 

  17. Q. Xiang, J. Yu, P.K. Wong, J. Coll. Inter. Sci. 357, 163 (2011)

    Article  CAS  Google Scholar 

  18. L. Linxiang, Y. Abe, Y. Nagasawa, R. Kudo, N. Usui, K. Imai, T. Mashino, M. Mochizuki, N. Miyata, Biomed. Chromatogr. 18, 470 (2004)

    Article  Google Scholar 

  19. T. Charbouillot, M. Brigante, G. Mailhot, P.R. Maddigapu, C. Minero, D. Vione, J. Photochem. Photobiol. A Chem. 222, 70 (2011)

    Article  CAS  Google Scholar 

  20. H. Bardouki, M.B. Da Rosa, N. Mihalopoulos, W.U. Palm, C. Zetzsch, Atmos. Environ. 36, 4627 (2002)

    Article  CAS  Google Scholar 

  21. M.G. Steiner, C.F. Babbs, Arch. Biochem. Biophys. 278, 478 (1990)

    Article  CAS  Google Scholar 

  22. C.H. Tung, J.H. Chang, Y.H. Hsieh, J.C. Hsu, A.V. Ellis, W.C. Liu, R.H. Yan, J. Taiwan Inst. Chem. Eng. 45, 1649 (2014)

    Article  CAS  Google Scholar 

  23. J.F. Jen, M.F. Leu, T.C. Yang, J. Chromatogr. A 796, 283 (1998)

    Article  CAS  Google Scholar 

  24. J.L. Acero, K. Stemmler, U.V. Gunten, Environ. Sci. Technol. 34, 591 (2000)

    Article  CAS  Google Scholar 

  25. Y. Liu, X. He, Y. Fu, D.D. Dionysiou, Chem. Eng. J. 284, 1317 (2016)

    Article  CAS  Google Scholar 

  26. Y. Liu, X. He, Y. Fu, D.D. Dionysiou, J. Hazard. Mater. 305, 229 (2016)

    Article  CAS  Google Scholar 

  27. W. Bi, Y. Wu, X. Wang, P. Zhai, W. Dong, Chem. Eng. J. 302, 811 (2016)

    Article  CAS  Google Scholar 

  28. A.M. Doi, M.K. Stoskopf, J. Aquat. Anim. Health 12, 246 (2000)

    Article  Google Scholar 

  29. Y. Seto, M. Ochi, S. Onoue, S. Yamada, J. Pharm. Biomed. Anal. 52, 781 (2010)

    Article  CAS  Google Scholar 

  30. B. Halling-Sorensen, A. Lykkeberg, F. Ingerslev, P. Blackwell, J. Tjornelund, Chemosphere 50, 1331 (2003)

    Article  CAS  Google Scholar 

  31. S. Carolina Castillo, M.D. Criado, N.A. Garcia, Dye. Pigment. 72, 178 (2007)

    Article  Google Scholar 

  32. C. Zhao, M. Pelaez, X. Duan, H. Deng, K. O’Shea, Appl. Catal. B Environ. 134, 92 (2013)

    Google Scholar 

  33. F. Zaviska, P. Drogui, G. Mercier, J.-F. Blais, Rev. Sci. eau 22, 53 (2009)

    Google Scholar 

  34. T.S. Alkhuraiji, S.O.B. Boukari, F.S. Alfadhl, J. Hazard. Mat. 328, 29 (2017)

    Article  CAS  Google Scholar 

  35. J. Rabani, M.S. Matheson, J. Am. Chem. Soc. 86, 3175 (1964)

    Article  CAS  Google Scholar 

  36. Y.H. Guan, J. Chen, L.J. Chen, X.X. Jiang, Q. Fu, Front. Chem. 8, 1 (2020)

    Article  Google Scholar 

  37. O.S. Furman, A.L. Teel, M. Ahmad, M.C. Merker, R.J. Watts, J. Environ. Eng. 137, 241 (2011)

    Article  CAS  Google Scholar 

  38. A.D. Shiraz, A. Takdastan, S.M. Borghei, J. Mol. Liq. 249, 463 (2018)

    Article  Google Scholar 

  39. T. Alkhuraiji, Ionisation par faisceau d’électrons de solutions aqueuses de benzène sulfonate et naphthalène sulfonate et sous-produits (Université de Poitiers, France, Thesis, 2013)

    Google Scholar 

  40. S. Jorfi, B. Kakavandi, H.R. Motlagh, M. Ahmadi, N. Jaafar zadeh, Appl. Catal. B Environ. 219, 216 (2017)

    Article  CAS  Google Scholar 

  41. J.A. Khan, X. He, H.M. Khan, N.S. Shah, D.D. Dionysiou, Chem. Eng. J. 218, 376 (2013)

    Article  CAS  Google Scholar 

  42. Y. Lee, C. Lee, J. Yoon, Water Res. 38, 2588 (2004)

    Google Scholar 

  43. R. Hazime, (2012)“Les espèces actives durant la dégradation photocatalytique,application aux pesticides” Thesis, Uni-Lyon, France

  44. P. Neta, I.H. Zemel, J. Am. Chem. Soc. 99, 164 (1977)

    Article  Google Scholar 

  45. J.M. Monteagudo, A. Durán, I.S. Martin, A. Carnicer, Appl. Catal. B Environ. 106, 242 (2011)

    CAS  Google Scholar 

  46. G. Fang, D.D. Dionysiou, S.R. Al-abed, D. Zhou, Applied Catal. B Environ. 129, 325 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first and last authors are grateful to the Directorate General for Scientific Research and Technological Development “DGRSDT Algeria” for financial support.

Funding

The Directorate General for Scientific Research and Technological Development “DGRSDT.”

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by EO, CM, AA and FF. Paper editing and supervision by AAA. The first draft of the manuscript was written by EO, CM and BS, and all authors commented on previous versions of the manuscript.

Corresponding author

Correspondence to Malika Chabani.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Consent for publication

All authors read and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouahiba, E., Chabani, M., Assadi, A.A. et al. Mineralization and photodegradation of oxytetracycline by UV/H2O2/Fe2+ and UV/PS/Fe2+ process: quantification of radicals. Res Chem Intermed 49, 1–21 (2023). https://doi.org/10.1007/s11164-022-04871-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04871-x

Keywords

Navigation