Skip to main content
Log in

Synergistic and efficient degradation of acid red 73 by using UV, H2O2, and PDS under neutral conditions: water matrix effects and transformation pathways

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Dye wastewater with high concentration, large molecular weight, complex structure, and certain toxicity has brought a serious burden to the environment. In this study, acid red 73 dye (AR73) was used as the model pollutant to compare the degradation effects of different systems on AR73. The influence factors of a UV/hydrogen peroxide/peroxydisulfate (UV/H2O2/PDS) composite system, such as H2O2 dosage, initial concentration of AR73, initial pH value, anion concentration, and actual water, on the degradation of AR73 were investigated. Compared with other systems, the UV/H2O2/PDS composite system had the best degradation effect of AR73, with a degradation efficiency of 98.98%, which conforms to the pseudo-first-order reaction kinetic model, the pseudo-first-order reaction kinetic constant (kobs) is 0.1339 min−1. And the synergy coefficients in this complex system were all greater than 2. Specifically, the degradation efficiency of the UV/H2O2/PDS composite system for AR73 was the highest when the initial pH was neutral. The presence of anions inhibited the degradation of AR73, and the real water reduced the degradation efficiency for AR73. Electron spin resonance (ESR) detection and free radicals capture test demonstrated that hydroxyl radical (·OH) was the main reactive species in AR73 degradation, and its 80.66–84.93% contribution. With the destruction of the structure of AR73 by free radicals, anilines, phenols, and oxalic acid were found to be the main intermediate products during the degradation of AR73 by gas-phase mass spectrometry and UV–vis spectrograms. The changes in toxicity during the degradation of AR73 by the UV/H2O2/PDS complex system were also assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All the data will be reflected partly in the text and partly in the supplementary literature.

References

  1. A. Khan, S.M. Prabhu, J. Park, W. Lee, C.-M. Chon, J.S. Ahn, G. Lee 47, 86 (2017)

    CAS  Google Scholar 

  2. M.M. Mekonnen, A.Y. Hoekstra, Sci Adv 2, e1500323 (2016)

    Article  Google Scholar 

  3. P. Tao, Y. Xu, C. Song, Y. Yin, Z. Yang, S. Wen, S. Wang, H. Liu, S. Li, C. Li, T. Wang, M. Shao, Sep. Purif. Technol. 179, 175 (2017)

    Article  CAS  Google Scholar 

  4. L.G.M. Silva, F.C. Moreira, M.A.P. Cechinel, L.P. Mazur, A.A.U. de Souza, S. Souza, R.A.R. Boaventura, V.J.P. Vilar, J Environ Manage 272, 111082 (2020)

    Article  CAS  Google Scholar 

  5. A.E.G.R. Ananthashankar, J. Chem. Eng. Process Technol. 05, 01 (2013)

    Article  Google Scholar 

  6. L. Xu, X. Li, J. Ma, Y. Wen, W. Liu, Appl. Catal. A 485, 91 (2014)

    Article  CAS  Google Scholar 

  7. L. Xu, G. Liang, M. Yin, Chemosphere 173, 425 (2017)

    Article  CAS  Google Scholar 

  8. L. Xu, Z. Guo, L. Du, J. He, Electrochim. Acta 97, 150 (2013)

    Article  CAS  Google Scholar 

  9. N.A. Khan, S.U. Khan, S. Ahmed, I.H. Farooqi, M. Yousefi, A.A. Mohammadi, F. Changani, TrAC, Trends Anal. Chem. 122, 115744 (2020)

    Article  CAS  Google Scholar 

  10. W.-D. Oh, Z. Dong, T.-T. Lim, Appl. Catal. B 194, 169 (2016)

    Article  CAS  Google Scholar 

  11. J. Lee, U. von Gunten, J.H. Kim, Environ Sci Technol 54(6), 3064 (2020)

    Article  CAS  Google Scholar 

  12. H. Bahrami, A. Eslami, R. Nabizadeh, A. Mohseni-Bandpi, A. Asadi, M. Sillanpää, J. Cleaner Prod. 198, 1210 (2018)

    Article  CAS  Google Scholar 

  13. C. Bonfante de Carvalho, M. Espina de Franco, F.S. Souza, L.A. Féris, Ozone Sci Eng. 40(5), 372 (2018)

    Article  CAS  Google Scholar 

  14. X. Yang, C. Lai, L. Li, M. Cheng, S. Liu, H. Yi, M. Zhang, Y. Fu, F. Xu, H. Yan, X. Liu, B. Li, Separation Purif. Technol. 287, 120517 (2022)

    Article  CAS  Google Scholar 

  15. M. Pagano, R. Ciannarella, V. Locaputo, G. Mascolo, A. Volpe, J Environ. Sci. Health A Tox Hazard Subst. Environ. Eng. 53(4), 393 (2018)

    Article  CAS  Google Scholar 

  16. S. B. Shuchi, M. B. K. Suhan, S. B. Humayun, M. E. Haque ,M. S. Islam, J. Water Process Eng. 39 (2021).

  17. M.N. Pervez, F.Y. Telegin, Y. Cai, D. Xia, T. Zarra, V. Naddeo, Water 11(12), 2532 (2019)

    Article  CAS  Google Scholar 

  18. G. Ran, Q. Li, Environ. Sci. Pollut. Res. Int. 27(6), 6042 (2020)

    Article  CAS  Google Scholar 

  19. Y. Lee, D. Gerrity, M. Lee, S. Gamage, A. Pisarenko, R.A. Trenholm, S. Canonica, S.A. Snyder, U. von Gunten, Environ. Sci. Technol. 50(7), 3809 (2016)

    Article  CAS  Google Scholar 

  20. D. Gu, C. Guo, J. Lv, S. Hou, Y. Zhang, Q. Feng, Y. Zhang, J. Xu, J. Photochem. Photobiol., A 379, 32 (2019)

    Article  CAS  Google Scholar 

  21. L. Liu, S. Lin, W. Zhang, U. Farooq, G. Shen, S. Hu, Chem. Eng. J. 346, 515–524 (2018)

    Article  CAS  Google Scholar 

  22. J.A. Khan, X. He, N.S. Shah, H.M. Khan, E. Hapeshi, D. Fatta-Kassinos, D.D. Dionysiou, Chem. Eng. J. 252, 393 (2014)

    Article  CAS  Google Scholar 

  23. J.A. Khan, X. He, H.M. Khan, N.S. Shah, D.D. Dionysiou, Chem. Eng. J. 218, 376 (2013)

    Article  CAS  Google Scholar 

  24. M. Kwon, S. Kim, Y. Yoon, Y. Jung, T.-M. Hwang, J. Lee, J.-W. Kang, Chem. Eng. J. 269, 379 (2015)

    Article  CAS  Google Scholar 

  25. X. Ding, L. Gutierrez, J.P. Croue, M. Li, L. Wang, Y. Wang, Chemosphere 253, 126655 (2020)

    Article  CAS  Google Scholar 

  26. Y. Wang, S. Guo, Z. Gu, A. Zhang, Chemosphere 242, 125139 (2020)

    Article  CAS  Google Scholar 

  27. F. Ali, J.A. Khan, N.S. Shah, M. Sayed, H.M. Khan, Process Saf. Environ. Prot. 117, 307 (2018)

    Article  CAS  Google Scholar 

  28. X. Yu, W. Qin, X. Yuan, L. Sun, F. Pan, D. Xia, J. Hazard Mater. 407, 124393 (2021)

    Article  CAS  Google Scholar 

  29. X. He, A.A. de la Cruz, D.D. Dionysiou, J. Photochem. Photobiol., A 251, 160 (2013)

    Article  CAS  Google Scholar 

  30. Y. Xu, Y. Wu, W. Zhang, X. Fan, Y. Wang, H. Zhang, Chem. Eng. J. 353, 626 (2018)

    Article  CAS  Google Scholar 

  31. Y. Zhang, J. Zhan, B. Wang, J. Huang, S. Deng, G. Yu, S. Komarneni, Y. Wang, Chem. Eng. J. 430, 132804 (2022)

    Article  CAS  Google Scholar 

  32. A. Khataee, H. Aleboyeh, M. Sheydaei, A. Aleboyeh, Res. Chem. Intermed. 42(2), 571 (2015)

    Article  Google Scholar 

  33. H. Wang, J. Zhan, L. Gao, G. Yu, S. Komarneni, Y. Wang, J Hazard Mater 390, 122180 (2020)

    Article  CAS  Google Scholar 

  34. H. Dong, Q. Xu, L. Lian, Y. Li, S. Wang, C. Li, X. Guan, Environ Sci Technol 55(22), 15390 (2021)

    Article  CAS  Google Scholar 

  35. G.M. Lanzafame, M. Sarakha, D. Fabbri, D. Vione, Molecules 22(4), 619 (2017)

    Article  Google Scholar 

  36. X. Zeng, Y. Meng, X. Sun, F. Guo, M. Yang, J. Environ. Chem. Eng. 9, 6 (2021)

    Google Scholar 

  37. X. Zhang, Y. Zhang, P. Shi, Z. Bi, Z. Shan, L. Ren, Sci. Total Environ. 770(25), 144674 (2021)

    Article  CAS  Google Scholar 

  38. J. Du, Y. Wang, Faheem, T. Xu, H. Zheng, J. Bao, RSC Adv. 9(35), 20323 (2019)

    Article  CAS  Google Scholar 

  39. I.Y. Habib, J. Burhan, F. Jaladi, C.M. Lim, A. Usman, N.T.R.N. Kumara, S.C.E. Tsang, A.H. Mahadi, Catal. Today 375, 506 (2021)

    Article  CAS  Google Scholar 

  40. L. Liu, C. Yang, W. Tan, Y. Wang, ACS Omega 5(23), 13739 (2020)

    Article  CAS  Google Scholar 

  41. C. Shao, R. Zhao, S. Jiang, S. Yao, Z. Wu, B. Jin, Y. Yang, H. Pan, R. Tang, Adv Mater 30(8), 1704876 (2018)

    Article  Google Scholar 

  42. L. Zou, Y. Wang, C. Huang, B. Li, J. Lyu, S. Wang, H. Lu, J. Li, Sci Total Environ 754, 142219 (2021)

    Article  CAS  Google Scholar 

  43. I. Konstantinou, Appl. Catal. B 42(4), 319 (2003)

    Article  CAS  Google Scholar 

  44. F. Fu, Q. Wang, B. Tang, J. Hazard Mater. 174(1–3), 17 (2010)

    Article  CAS  Google Scholar 

  45. M. Karkmaz, E. Puzenat, C. Guillard, J.M. Herrmann, Appl. Catal. B 51(3), 183 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our work was supported by the National Natural Science Foundation of China (Grant No. 51778267), the National Water Pollution Control and Treatment Science and Technology Major Project (No. 2012ZX07408001), the Jilin Province Science and Technology Department Project (No. 20190201113JC), the Jilin Provincial Department of Ecology and Environment Project (No.2019-15).

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 51778267); the National Water Pollution Control and Treatment Science and Technology Major Project (No. 2012ZX07408001); the Jilin Province Science and Technology Department Project (No. 20190201113JC); and the Jilin Provincial Department of Ecology and Environment Project (No.2019–15).

Author information

Authors and Affiliations

Authors

Contributions

YL involved in methodology, writing—review, and funding acquisition. AH involved in formal analysis, writing—original draft, and editing. HL involved in writing—original draft and data curation. CS involved in conceptualization. Lei Chen involved in supervision. BY involved in formal analysis. Yi Liu involved in project administration and supervision. YW involved in conceptualization. XL involved in writing— review and editing.

Corresponding author

Correspondence to Yingzi Lin.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical approval

Ethical Approval is not covered in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4726 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Hou, A., Li, H. et al. Synergistic and efficient degradation of acid red 73 by using UV, H2O2, and PDS under neutral conditions: water matrix effects and transformation pathways. Res Chem Intermed 49, 23–42 (2023). https://doi.org/10.1007/s11164-022-04870-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04870-y

Keywords

Navigation