Skip to main content

Advertisement

Log in

Additive-free photocatalyzed Hydrogen production from formic acid aqueous solution on molybdenum carbides

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Hydrogen energy is the answer to the global energy crisis in the close future. Hydrogen is generable from various methods including electrolysis, steam methane reforming, thermal decomposition and photocatalyzed generation from all sources. Mo2C-related catalysts are highly active in hydrogen generation from formic acid at elevated temperatures. In this work, Mo2C and Co-doped Mo2C nanoparticles present high activity in hydrogen generation from formic acid under ultraviolent light at room temperature without any additive. The addition of Mo2C and Co-doped Mo2C nanoparticles in photocatalyzed formic acid decomposition improves the H2 productivity and selectivity greatly and reduces non-H2 productive formic acid consumption under ultraviolet light. A H2 production of 2890 μmol·g−1·h−1 yielded on 5-CoMo2C. The H2 selectivity of the catalyzed formic acid decomposition is 5 times that of the non-catalyzed reaction under the same condition. The complete formation of Mo2C phase is key to the high photocatalytic activity, owning to both prolonged calcination time and Co doping. With Co doping, the Mo2C phase formation was completed within a much shorter calcination time, and the obtained catalysts present higher H2 productivity compared to non-doped catalysts. The use of Mo2C in photocatalyzed H2 production provides a new low-cost H2 production method and in line with pollution control and resourceful utilization of formic acid, which fits the prospect of safe, clean and additive-free H2 generation approach.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Q. Xiang, J. Yu, M. Jaroniec, J. Am. Chem. Soc. 134, 6575 (2012)

    Article  CAS  Google Scholar 

  2. T. Hori, Q. Ma, K. Obayashi, M. Nagao, S. Teranishi, T. Hibino, Int. J. Hydrogen Energy 44, 2454 (2019)

    Article  CAS  Google Scholar 

  3. U.J. Kilgore, J. Roberts, D.H. Pool, A.M. Appel, M.P. Stewart, M.R. Dubois, W.G. Dougherty, W.S. Kassel, R.M. Bullock, D.L. Dubois, J. Am. Chem. Soc. 133, 5861 (2011)

    Article  CAS  Google Scholar 

  4. H. Ding, C. Luo, X. Li, D. Cao, L. Zhang, Fuel 253, 311 (2019)

    Article  CAS  Google Scholar 

  5. S. Martin, G. Kraaij, T. Ascher, D. Wails, A. Wörner, Int. J. Hydrogen Energy 40, 95 (2015)

    Article  CAS  Google Scholar 

  6. B. Liu, X. Yu, W. Shi, Y. Shen, D. Zhang, Z. Tang, Int. J. Hydrogen Energy 45, 24870 (2020)

    Article  CAS  Google Scholar 

  7. A.D. Michele, A. Dell’Angelo, A. Tripodi, E. Bahadori, F. Sanchez, D. Motta, N. Dimitratos, I. Rossetti, G. Ramis, Int. J. Hydrogen Energy 44, 952 (2019)

    Article  Google Scholar 

  8. J.L. Contreras, J. Salmones, J.A. Colin-Luna, L. Nuno, B. Quintana, I. Cordova, B. Zeifert, C. Tapia, G.A. Fuentes, Int. J. Hydrogen Energy 39, 18835 (2014)

    Article  CAS  Google Scholar 

  9. C. M. Vo, A. N. T. Cao, A. Saleh Qazaq, C. Q. Pham, D. L. T. Nguyen, M. Alsaiari, T. V. Vu, A. Sharma, P. T. T. Phuong, T. Tran Van, M. A. Rizk, T. M. Nguyen and D. Vo. (2022) Fuel 326, 125106

  10. Y.H. Li, F. Zhang, Y. Chen, J.Y. Li, Y.J. Xu, Green Chem. 22, 163 (2020)

    Article  CAS  Google Scholar 

  11. Z. He, Y. Sun, S. Cheng, Z. Jia, X. Xu, Fuel 287, 119473 (2020)

    Article  Google Scholar 

  12. Y. Li, R. He, P. Han, B. Hou, C. Ouyang, Appl. Catal. B Environ. 279, 119379 (2020)

    Article  CAS  Google Scholar 

  13. A. Xz, F.B. Ao, C.A. Xin, B. Lla, A. Lr, A. Lt, C. Jyab, Catal. Today 335, 166 (2019)

    Article  Google Scholar 

  14. S. Khan, H. Choi, D. Kim, S.Y. Lee, S.H. Cho, Chem. Eng. J. 395, 125092 (2020)

    Article  CAS  Google Scholar 

  15. J. Lu, J. Zhang, Q. Chen, H. Liu, J. Photoch. Photobio. A 380, 111853 (2019)

    Article  CAS  Google Scholar 

  16. H. Assad, I. Fatma, A. Kumar, S. Kaya, D.N. Vo, A. Al-Gheethi, A. Sharma, Chemosphere 298, 134221 (2022)

    Article  CAS  Google Scholar 

  17. P.E. Lokhande, S. Kulkarni, S. Chakrabarti, H.M. Pathan, M. Sindhu, D. Kumar, J. Singh, A. Kumar, Y. Kumar Mishra, D.-C. Toncu, M. Syväjärvi, A. Sharma, A. Tiwari, Coordin. Chem. Rev. 473, 214771 (2022)

    CAS  Google Scholar 

  18. Y.A. Bhembe, L.P. Lukhele, L. Hlekelele, S.S. Ray, A. Sharma, D.N. Vo, L.N. Dlamini, Chemosphere 261, 128159 (2020)

    Article  CAS  Google Scholar 

  19. A. Thakur, A. Kumar, S. Kaya, D.-V.N. Vo, A. Sharma, Fuel 312, 122934 (2022)

    Article  CAS  Google Scholar 

  20. H. Assad, S. Kaya, P. Senthil Kumar, D. Voma, A. Sharma and A. Kumar. (2022) Fuel 323, 124277

  21. L.C. Makola, S. Moeno, C.N.M. Ouma, A. Sharma, D.-V.N. Vo, L.N. Dlamini, J. Alloy. Compd. 916, 165459 (2022)

    Article  CAS  Google Scholar 

  22. O. Ozcan, A.N. Akin, Int. J. Hydrogen Energy 44, 14117 (2019)

    Article  CAS  Google Scholar 

  23. H. Li, C. Ma, X. Zou, A. Li, L. Zhu, Int. J. Hydrogen Energy 46, 22303 (2021)

    Article  CAS  Google Scholar 

  24. M.S. Frei, C. Mondelli, M. Short, J. Pérez-Ramírez, Chemsuschem 13, 6330 (2020)

    CAS  Google Scholar 

  25. J.P. Breen, R. Burch, H.M. Coleman, Appl. Catal. B Environ. 39, 65 (2002)

    Article  CAS  Google Scholar 

  26. M. Ni, D. Leung, M. Leung, Int. J. Hydrogen Energy 32, 3238 (2007)

    Article  CAS  Google Scholar 

  27. B. Loges, A. Boddien, H. Junge, M. Beller, Angew. Chem. Int. Edit. 47, 3962 (2008)

    Article  CAS  Google Scholar 

  28. K. Mori, Y. Futamura, S. Masuda, H. Kobayashi, H. Yamashita, Nat. Commun. 10, 1 (2019)

    Article  Google Scholar 

  29. F. Joó, Chemsuschem 1, 805 (2008)

    Article  Google Scholar 

  30. L. Vaccaro, F. Valentini, V. Kozell, C. Petrucci, D. Gelman, Energ. Environ. Sci. 12, 2646 (2019)

    Google Scholar 

  31. Y. Tao, L. Tao, Z. Pan, S. Qiu, X. Shen, Fuel 217, 106 (2018)

    Article  CAS  Google Scholar 

  32. C. Fellay, P.J. Dyson, G. Laurenczy, Angew. Chem. Int. Edit. 47, 3966 (2008)

    Article  CAS  Google Scholar 

  33. L. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang, W. Xu, S. Zheng, Z. Jiang, Q. Yu, Y.-W. Li, C. Shi, X.-D. Wen, D. Ma, Natutre 544, 80 (2017)

    Article  CAS  Google Scholar 

  34. A. Boddien, D. Mellmann, F. Gartner, R. Jackstell, H. Junge, P.J. Dyson, G. Laurenczy, R. Ludwig, M. Beller, Science 333, 1733 (2011)

    Article  CAS  Google Scholar 

  35. K. Tedsree, T. Li, S. Jones, C.W. Chan, K.M. Yu, P.A. Bagot, E.A. Marquis, G.D. Smith, S.C. Tsang, Nat. Nanotechnol 6, 302 (2011)

    Article  CAS  Google Scholar 

  36. S. Kar, M. Rauch, G. Leitus, Y. Ben-David, D. Milstein, Nat. Catal. 4, 193 (2021)

    Article  CAS  Google Scholar 

  37. S. Zhu, Z. Pan, Y. Tao, Y. Chen, J. Renew. Mater. 8, 939 (2020)

    Article  CAS  Google Scholar 

  38. Y.-Y. Wang, L.-L. Ling, H. Jiang, Green Chem 18, 4032 (2016)

    Article  CAS  Google Scholar 

  39. S. Enthaler, J. von Langermann, T. Schmidt, Energ. Environ. Sci. 3, 1207 (2010)

    CAS  Google Scholar 

  40. D.H. Carrales-Alvarado, A.B. Dongil, J.M. Fernández-Morales, M. Fernández-García, A. Guerrero-Ruiz, I. Rodríguez-Ramos, Catal. Sci. Technol. 10, 6790 (2020)

    CAS  Google Scholar 

  41. J. Albo, G. García, React. Chem. Eng. 6, 304 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the financial support of grant from the Natural Science Funds for Young Scholar of China (Grant No.21107049) and the priority academic program development of Jiangsu Higher Education Institution (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaqiu Tao.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3874 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Pan, Z., Tao, Y. et al. Additive-free photocatalyzed Hydrogen production from formic acid aqueous solution on molybdenum carbides. Res Chem Intermed 49, 91–100 (2023). https://doi.org/10.1007/s11164-022-04863-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04863-x

Keywords

Navigation