Skip to main content
Log in

The destruction of trichloroethylene by zinc dioxide using a modified Fenton reaction: Performance and a preliminary mechanism

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The use of zinc dioxide (ZnO2) powder as a source of H2O2 in a modified Fenton reaction catalyzed with Fe(II) to destroy trichloroethylene (TCE) was investigated. The experimental results showed that the optimum molar ratio of ZnO2/Fe(II)/TCE in ZnO2/Fe(II)/TCE system was 20/20/1 with a TCE removal of up to 99.6%. TCE degradation was significantly inhibited by the low reaction temperature and influenced by the initial solution pH, in which ZnO2/Fe(II)/TCE system was suited for high temperature and low pH settings. Both Cl and HCO3 anions showed a detrimental effect on TCE elimination with HCO3 being more significant. The addition of a high concentration (100 mg/L) of HA in solution inhabited TCE degradation performance, while the effect was negligible at low concentrations (1–10 mg/L). The tests with hydroxyl radical (HO·) scavengers elucidated that TCE was mainly degraded by HO· radicals in ZnO2/Fe(II)/TCE system. TCE degradation and the dechlorination proceeded simultaneously, but the final release of Cl was less than the degraded TCE, indicating the occurrence of chlorinated intermediates in the reaction process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Choi, W. Lee, J. Hazard. Mater. 211, 146 (2012)

    Article  PubMed  Google Scholar 

  2. K. Knauss, M. Dibley, R. Leif, D. Mew, R. Aines, Appl. Geochem. 15, 501 (2000)

    Article  CAS  Google Scholar 

  3. V. Alonso-de-Linaje, M. Mangayayam, D. Tobler, K. Dietmann, R. Espinosa, V. Rives, K. Dalby, Chemosphere 236, 124369 (2019)

    Article  CAS  PubMed  Google Scholar 

  4. Z. Zhou, J. Huang, G. Zeng, R. Yang, Z. Xu, Z. Zhou, S. Lyu, Water Res. 221, 118792 (2022)

    Article  CAS  PubMed  Google Scholar 

  5. Y. Sun, M. Li, X. Gu, M. Danish, A. Shan, M. Ali, Z. Qiu, Q. Sui, S. Lyu, J. Hazard. Mater. 407, 124814 (2021)

    Article  CAS  PubMed  Google Scholar 

  6. Z. Zhou, J. Huang, Z. Xu, M. Ali, A. Shan, R. Fu, S. Lyu, Sep. Purif. Technol. 273, 118990 (2021)

    Article  CAS  Google Scholar 

  7. P. Wang, Z. Xu, Y. Liu, X. Sheng, J. Dong, Z. Lu, A. Shan, S. Lyu, Environ. Sci. Pollut. Res. 29, 53176 (2022)

    Article  CAS  Google Scholar 

  8. R. Doherty, Environ. Forensics 1, 69 (2000)

    Article  CAS  Google Scholar 

  9. X. Fu, X. Wei, W. Zhang, W. Yan, P. Wei, S. Lyu, Water Sci. Technol. Water Supply 22, 208 (2022)

    Article  CAS  Google Scholar 

  10. L. Hu, Z. Xia, J. Hazard. Mater. 342, 446 (2018)

    Article  CAS  PubMed  Google Scholar 

  11. X. Gu, S. Lu, L. Li, Z. Qiu, Q. Sui, K. Lin, Q. Luo, Ind. Eng. Chem. Res. 50, 11029 (2011)

    Article  CAS  Google Scholar 

  12. M. Mahmoodlu, S. Hassanizadeh, N. Hartog, Sci. Total Environ. 485–486, 755 (2014)

    Article  PubMed  Google Scholar 

  13. M. Xu, X. Gu, S. Lu, Z. Qiu, S. Qian, Ind. Eng. Chem. Res. 53, 1056 (2014)

    Article  CAS  Google Scholar 

  14. X. Zhang, X. Gu, S. Lu, Z. Miao, M. Xu, X. Fu, Z. Qiu, Q. Sui, J. Hazard. Mater. 284, 253 (2015)

    Article  CAS  PubMed  Google Scholar 

  15. X. Li, J. He, J. Lu, Y. Zhou, Y. Zhou, J. Hazard. Mater. 424, 127650 (2022)

    Article  CAS  PubMed  Google Scholar 

  16. G. Chen, G. Hoag, P. Chedda, F. Nadim, G. Dobbs, J. Hazard. Mater. 87, 171 (2001)

    Article  CAS  PubMed  Google Scholar 

  17. X. Sheng, Z. Xu, Y. Liu, P. Wang, J. Dong, Z. Lu, A. Shan, S. Lyu, Res. Chem. Intermed. 48, 1645 (2022)

    Article  CAS  Google Scholar 

  18. J. Lu, Y. Zhou, L. Ling, Y. Zhou, Chem. Eng. J. 446, 137067 (2022)

    Article  Google Scholar 

  19. C. Walling, Acc. Chem. Res. 8, 125 (1975)

    Article  CAS  Google Scholar 

  20. M. Sunder, D. Hempel, Water Res. 31, 33 (1997)

    Article  CAS  Google Scholar 

  21. B. Smith, A. Teel, R. Watts, J. Environ. Eng. 135, 535 (2009)

    Article  CAS  Google Scholar 

  22. H. Kim, H. Hong, J. Jung, S. Kim, J. Yang, J. Hazard. Mater. 176, 1038 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. H. Nishikiori, M. Furukawa, T. Fujii, Appl. Catal. B 102, 470 (2011)

    Article  CAS  Google Scholar 

  24. N. Zhang, S. Lin, F. Wang, Y. Liu, J. Zhang, L. Zhou, J. Lei, Res. Chem. Intermed. 47, 3379 (2021)

    Article  CAS  Google Scholar 

  25. D. Yang, M. Gondal, Z. Yamani, U. Baig, X. Qiao, G. Liu, Q. Xu, D. Xiang, J. Mao, K. Shen, Mater. Sci. Semicond. Process. 57, 124 (2017)

    Article  CAS  Google Scholar 

  26. N. Uekawa, J. Kajiwara, N. Mochizuki, K. Kakegawa, Y. Sasaki, J. Phys. Chem. Lett. 30, 606 (2001)

    Article  Google Scholar 

  27. F. Meleney, J. Am. Med. Assoc. 149, 1450 (1952)

    Article  CAS  PubMed  Google Scholar 

  28. S. Olsen, L. Pedersen, M. Hermann, J. Coat. Technol. Res. 6, 187 (2009)

    Article  CAS  Google Scholar 

  29. Y. Wolanov, P. Prikhodchenko, A. Medvedev, R. Pedahzur, O. Lev, Environ. Sci. Technol. 47, 8769 (2013)

    Article  CAS  PubMed  Google Scholar 

  30. G. Buxton, C. Greenstock, W. Helman, A. Ross, J. Phys. Chem. Ref. Data 17, 513 (1988)

    Article  CAS  Google Scholar 

  31. A. Teel, R. Watts, J. Hazard. Mater. 94, 179 (2002)

    Article  CAS  PubMed  Google Scholar 

  32. J. Lu, Y. Zhou, Y. Zhou, Chem. Eng. J. 422, 130126 (2021)

    Article  CAS  Google Scholar 

  33. F. Yang, B. Sheng, Z. Wang, Y. Xue, J. Liu, T. Ma, R. Bush, H. Kusic, Y. Zhou, J. Hazard Mater. 406, 124774 (2021)

    Article  CAS  PubMed  Google Scholar 

  34. J. Ravikumar, M. Gurol, Environ. Sci. Technol. 28, 394 (1994)

    Article  CAS  PubMed  Google Scholar 

  35. Z. Stuglik, Z. PawełZagórski, Radiat. Phys. Chem. 17, 229 (1981)

    CAS  Google Scholar 

  36. I. Yamazaki, L. Piette, J. Biol. Chem. 265, 13589 (1990)

    Article  CAS  PubMed  Google Scholar 

  37. S. Gligorovski, R. Strekowski, S. Barbati, D. Vione, Chem. Rev. 115, 13051 (2015)

    Article  CAS  PubMed  Google Scholar 

  38. S. Girigani, H. Singh, S. Kola, V. Yelmeli, V. Regula, S. Shah, N. Jain, P. Kumar, Res. Chem. Intermed. 46, 267 (2020)

    Article  CAS  Google Scholar 

  39. E. Lipczynska-Kochany, G. Sprah, S. Harms, Chemosphere 30, 9 (1995)

    Article  CAS  PubMed  Google Scholar 

  40. X. Yu, J. Barker, J. Phys. Chem. A 107, 1313 (2003)

    Article  CAS  Google Scholar 

  41. P. Neta, R. Huie, A. Ross, J. Phys. Chem. Ref. Data 17, 1027 (1988)

    Article  CAS  Google Scholar 

  42. E. Siedlecka, A. Więckowska, P. Stepnowski, J. Hazard. Mater. 147, 497 (2007)

    Article  CAS  PubMed  Google Scholar 

  43. Y. Zhou, X. Fang, T. Wang, Y. Hu, J. Lu, Chem. Eng. J. 313, 638 (2017)

    Article  CAS  Google Scholar 

  44. J. Grebei, J. Pignatello, W. Mitch, Environ. Sci. Technol. 44, 6822 (2010)

    Article  Google Scholar 

  45. C. Liao, S. Kang, F. Wu, Chemosphere 44, 1193 (2001)

    Article  CAS  PubMed  Google Scholar 

  46. D. Richardson, H. Yao, K. Frank, D. Bennett, J. Am. Chem. Soc. 122, 1729 (2000)

    Article  CAS  Google Scholar 

  47. Q. Hou, L. Qin, X. Peng, C. Zhou, X. Li, J. Zhang, L. Gao, Res. Chem. Intermed. 48, 3753 (2022)

    CAS  Google Scholar 

  48. B. Li, L. Li, K. Lin, W. Zhang, S. Lu, Q. Luo, Ultrason. Sonochem. 20, 855 (2013)

    Article  CAS  PubMed  Google Scholar 

  49. Q. Wang, A. Lemley, J. Environ. Qual. 33, 2343 (2004)

    Article  CAS  PubMed  Google Scholar 

  50. L. Wei, K. Wang, X. Kong, G. Liu, S. Cui, Q. Zhao, F. Cui, Front. Environ. Sci. Eng. 10, 327 (2016)

    CAS  Google Scholar 

  51. J. Xu, Z. Cao, H. Zhou, Z. Lou, Y. Wang, X. Xu, G. Lowry, Environ. Sci. Technol. 53, 13344 (2019)

    Article  PubMed  Google Scholar 

  52. J. Xu, Y. Wang, C. Weng, W. Bai, Y. Jiao, R. Kaegi, G. Lowry, Environ. Sci. Technol. 53, 5936 (2019)

    Article  CAS  PubMed  Google Scholar 

  53. J. Xu, H. Li, G. Lowry, Acc. Mater. Res. 2, 420 (2021)

    Article  CAS  Google Scholar 

  54. J. Xu, A. Avellan, H. Li, X. Liu, V. Noel, Z. Lou, Y. Wang, R. Kaegi, G. Henkelman, G. Lowry, Adv. Mater. 32, 1906910 (2020)

    Article  CAS  Google Scholar 

  55. J. Xu, A. Avellan, H. Li, E. Clark, G. Henkelman, R. Kaegi, G. Lowry, Environ. Sci. Technol. 54, 13294 (2020)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the grant from National Natural Science Foundation of China (No. 41977164).

Author information

Authors and Affiliations

Authors

Contributions

Xinyan Wei was involved in conceptualization, methodology, software, investigation, data curation, formal analysis, and writing—original draft. Xiaori Fu was involved in methodology, software, investigation, data curation, formal analysis, validation, and writing—review and editing. Shuguang Lyu was involved in validation, writing—review and editing, supervision, project administration, and funding acquisition. Xinyan Wei and Xiaori Fu contributed to the manuscript equally and should be regarded as co-first authors.

Corresponding author

Correspondence to Shuguang Lyu.

Ethics declarations

Conflict of Interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. There is no professional or other personal interest of any nature or kind in any product, service, and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled “The destruction of trichloroethylene by zinc dioxide using a modified Fenton reaction: Performance and a preliminary mechanism.”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7755 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Fu, X. & Lyu, S. The destruction of trichloroethylene by zinc dioxide using a modified Fenton reaction: Performance and a preliminary mechanism. Res Chem Intermed 48, 4459–4473 (2022). https://doi.org/10.1007/s11164-022-04837-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04837-z

Keywords

Navigation