Skip to main content
Log in

Insight to an efficient and magnetic α-Fe2O3/γ-Fe2O3/Cu2O hybrid catalysis for peroxymonosulfate: preparation, performance, and mechanism

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The development of catalysts with high catalytic activity and convenient recycling property is the long-term goal of sulfate-based advanced oxidation processes for the degradation of organic pollutants. In this work, a kind of iron/copper oxide hybrid catalyst (α-Fe2O3/γ-Fe2O3/Cu2O, CuFe-13) with both higher catalytic performance and paramagnetism was synthesized using a modified method for conventional CuFeO2. Through X-ray diffraction and infrared spectra characterization, the catalyst was verified a hybrid of α-Fe2O3, γ-Fe2O3 and Cu2O, in which the exist of magnetic γ-Fe2O3 was the main cause for CuFe-13’s paramagnetism and convenient magnetic recycling property. The mechanism for CuFe-13’s excellent catalytic performance was primarily investigated. Through scanning electron microscope, X-ray photoelectron spectroscopy, N2 adsorption–desorption measurement, radical quenching experiments, and electron paramagnetic resonance characterization analysis, the CuFe-13 represented larger surface area, bigger porosity, more efficient synergistic effect among Cu, Fe, and O than CuFeO2. The generation of various of reactive oxygen species (ROS), including sulfate radical (\({\text{SO}}_{4}^{\cdot - }\)), hydroxyl radical (·OH), and singlet oxygen (1O2), especially 1O2 were more, which might lead to CuFe-13’s higher catalytic performance. The effects of PMS concentration, CuFe-13 dosage, initial pH, initial OG concentration were analyzed. The optimal removal efficiency of OG could be achieved 100% within 20 min with 1 mM PMS and 0.2 g L−1 CuFe-13 under neutral condition. This study provided an efficient PMS-activated catalyst for degradation of organic pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Brillas, C.A. Martinez-Huitle, Appl. Catal. B Environ. 166, 603 (2015)

    Article  CAS  Google Scholar 

  2. A. Özkan, M.H. Özkan, R. Gürkan, M. Akçay, M. Sökmen, J. Photoch. Photobiol. A 163, 29 (2004)

    Article  CAS  Google Scholar 

  3. M. Toor, B. Jin, S. Dai, V. Vimonses, J. Ind. Eng. Chem. 21, 653 (2015)

    Article  CAS  Google Scholar 

  4. A.Y. Zahrim, C. Tizaoui, N. Hilal, Desalination 266, 1 (2011)

    Article  CAS  Google Scholar 

  5. C. Thamaraiselvan, M. Noel, Crit. Rev. Environ. Sci. Technol. 45, 1007 (2015)

    Article  CAS  Google Scholar 

  6. V. Bharti, K. Vikrant, M. Goswami, H. Tiwari, R.K. Sonwani, J. Lee, D.C.W. Tsang, K.H. Kim, M. Saeed, S. Kumar, B.N. Rai, B.S. Giri, R.S. Singh, Environ. Res. 171, 356 (2019)

    Article  CAS  PubMed  Google Scholar 

  7. G.E. Yuan, Y.Z. Qin, M.Y. Feng, X.L. Ru, X. Zhang, Environ. Technol. Innov. 22, 101403 (2021)

    Article  CAS  Google Scholar 

  8. H.A. Asl, Z. Moradi, M. Ghaedi, M.M. Sabzehmeidani, J. Photoch. Photobiol. A 401, 112755 (2020)

    Article  CAS  Google Scholar 

  9. T. Li, X.G. Du, J.Q. Deng, K. Qi, J.D. Zhang, L.L. Gao, X.P. Yue, J. Environ. Sci. China 108, 188 (2021)

    Article  CAS  PubMed  Google Scholar 

  10. J. Miao, X.G. Duan, J. Li, J. Dai, B. Liu, S.B. Wang, W. Zhou, Z.P. Shao, Chem. Eng. J. 355, 721 (2019)

    Article  CAS  Google Scholar 

  11. S.S. Zhu, X.C. Huang, F. Ma, L. Wang, X.G. Duan, S.B. Wang, Environ. Sci. Technol. 52, 8649 (2018)

    Article  CAS  PubMed  Google Scholar 

  12. X.J. Qiu, S.J. Yang, M. Dzakpasu, X.P. Li, D.H. Ding, P.K. Jin, R.Z. Chen, Q.H. Zhang, X.C.C. Wang, Chem. Eng. J. 372, 605 (2019)

    Article  CAS  Google Scholar 

  13. H. Kim, W. Kim, Y. Mackeyev, G.S. Lee, H.J. Kim, T. Tachikawa, S. Hong, S. Lee, J. Kim, L.J. Wilson, T. Majima, P.J.J. Alvarez, W. Choi, J. Lee, Environ. Sci. Technol. 46, 9606 (2012)

    Article  CAS  PubMed  Google Scholar 

  14. Y.H. Guan, J. Ma, Y.M. Ren, Y.L. Liu, J.Y. Xiao, L.Q. Lin, C. Zhang, Water Res. 47, 5431 (2013)

    Article  CAS  PubMed  Google Scholar 

  15. X.K. Tian, P.P. Gao, Y.L. Nie, C. Yang, Z.X. Zhou, Y. Li, Y.X. Wang, Chem. Commun. 53, 6589 (2017)

    Article  CAS  Google Scholar 

  16. J.L. Wang, S.Z. Wang, Chem. Eng. J. 334, 1502 (2018)

    Article  CAS  Google Scholar 

  17. F.G. Wang, W.J. Wang, S.J. Yuan, W. Wang, Z.H. Hu, J. Photoch. Photobiol. A 348, 79 (2017)

    Article  CAS  Google Scholar 

  18. S.Y. Yang, P. Wang, X. Yang, L. Shan, W.Y. Zhang, X.T. Shao, R. Niu, J. Hazard. Mater. 179, 552 (2010)

    Article  CAS  PubMed  Google Scholar 

  19. C. Cai, L.G. Wang, H. Gao, L.W. Hou, J. Environ. Sci. China 26, 1267 (2014)

    Article  CAS  PubMed  Google Scholar 

  20. K.X. Wen, L.X. Wei, Z.Q. Ren, B. Wang, J.F. Lu, J. Mater. Res. 36, 1549 (2021)

    Article  CAS  Google Scholar 

  21. J. Cheng, N. Wei, Y. Wang, Y. Long, G. Fan, Sep. Purif. Technol. 277, 119441 (2021)

    Article  CAS  Google Scholar 

  22. H. Zhu, A. Guo, L. Xian, Y. Wang, Y. Long, G. Fan, J. Hazard. Mater. 430, 128433 (2022)

    Article  CAS  PubMed  Google Scholar 

  23. Y. Feng, K.M. Shih, Environ. Sci. Technol. 50, 3119 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. S.Y. Zhao, B. Zhang, H. Su, J.J. Zhang, X.H. Li, K.X. Wang, J.S. Chen, X. Wei, P.Y. Feng, J. Mater. Chem. A 6, 4331 (2018)

    Article  CAS  Google Scholar 

  25. P. Nazari, S.R. Setayesh, Appl. Organomet. Chem. 33, e5138 (2019)

    Google Scholar 

  26. S.S. Xin, G.C. Liu, X.H. Ma, J.X. Gong, B.R. Ma, Q.H. Yan, Q.H. Chen, D. Ma, G.S. Zhang, M.C. Gao, Y.J. Xin, Appl. Catal. B Environ. 280, 119386 (2021)

    Article  CAS  Google Scholar 

  27. A. Norouzi, A. Nezamzadeh-Ejhieh, Physica B 599, 412422 (2020)

    Article  CAS  Google Scholar 

  28. Q.L. Liu, Z.Y. Zhao, J.H. Yi, Chem. Eng. J. 396, 125290 (2020)

    Article  CAS  Google Scholar 

  29. Y. Xu, J.J. Jin, X.L. Li, Y.D. Han, H. Meng, J.B. Wu, X. Zhang, J. Sep. Sci. 39, 3647 (2016)

    Article  CAS  PubMed  Google Scholar 

  30. W. Chen, C.A. Cheng, J.I. Zink, ACS Nano 13, 1292 (2019)

    CAS  PubMed  Google Scholar 

  31. R. Soleyman, A. Pourjavadi, N. Masoud, A. Varamesh, A. Sattari, Bull. Korean Chem. Soc. 35, 1375 (2014)

    Article  CAS  Google Scholar 

  32. S.K. Lakhera, R. Venkataramana, A. Watts, M. Anpo, B. Neppolian, Res. Chem. Intermediat. 43, 5091 (2017)

    Article  CAS  Google Scholar 

  33. Y. Guo, M.M. Dai, Z.X. Zhu, Y.Q. Chen, H. He, T.H. Qin, Appl. Surf. Sci. 480, 601 (2019)

    Article  CAS  Google Scholar 

  34. H. Jiang, C.Q. Zhu, Y. Yuan, C.L. Yue, C. Ling, F.Q. Liu, A.M. Li, Chem. Eng. J. 384, 123302 (2020)

    Article  CAS  Google Scholar 

  35. J.L. Peng, X.H. Lu, X. Jiang, Y.H. Zhang, Q.X. Chen, B. Lai, G. Yao, Chem. Eng. J. 354, 740 (2018)

    Article  CAS  Google Scholar 

  36. J. Ye, J.D. Dai, C.X. Li, Y.S. Yan, Chem. Eng. J. 421, 127802 (2021)

    Article  CAS  Google Scholar 

  37. L.H. Wang, H.D. Xu, N. Jiang, Z.M. Wang, J. Jiang, T. Zhang, Environ. Sci. Technol. 54, 4686 (2020)

    Article  CAS  PubMed  Google Scholar 

  38. R.M. Mohamed, A.A. Ismail, Sep. Purif. Technol. 266, 118360 (2021)

    Article  CAS  Google Scholar 

  39. A. Mirzaei, Z. Chen, F. Haghighat, Chemosphere 174, 665 (2017)

    Article  CAS  PubMed  Google Scholar 

  40. I. Platzman, R. Brener, H. Haick, J. Phys. Chem. C 112, 1101 (2008)

    Article  CAS  Google Scholar 

  41. J.S. Hu, J. Li, J.F. Cui, W.J. An, L. Liu, Y.H. Liang, W.Q. Cui, J. Hazard. Mater. 384, 121399 (2020)

    Article  CAS  PubMed  Google Scholar 

  42. Y.X. Zeng, Z.Z. Lai, Y. Han, H.Z. Zhang, S.L. Xie, X.H. Lu, Adv. Mater. 30, 1802396 (2018)

    Article  CAS  Google Scholar 

  43. H.X. Chen, Y. Xu, K.M. Zhu, H. Zhang, Appl. Catal. B Environ. 284, 119732 (2021)

    Article  CAS  Google Scholar 

  44. A.Q. Wang, Z. Chen, Z.K. Zheng, H. Xu, H. Wang, K. Hu, K. Yan, Chem. Eng. J. 379, 122340 (2020)

    Article  CAS  Google Scholar 

  45. M. Zhu, J. Miao, D.Q. Guan, Y.J. Zhong, R. Ran, S.B. Wang, W. Zhou, Z.P. Shao, ACS Sustain. Chem. Eng. 8, 6033 (2020)

    Article  CAS  Google Scholar 

  46. Z.H. Diao, F.X. Dong, L. Yan, Z.L. Chen, W. Qian, L.J. Kong, Z.W. Zhang, T. Zhang, X.Q. Tao, J.J. Du, D. Jiang, W. Chu, J. Hazard. Mater. 384, 121385 (2020)

    Article  CAS  PubMed  Google Scholar 

  47. Z.H. Diao, Z.Y. Lin, X.Z. Chen, L. Yan, F.X. Dong, W. Qian, L.J. Kong, J.J. Du, W. Chu, Chem. Eng. J. 389, 123771 (2020)

    Article  CAS  Google Scholar 

  48. L.L. Gao, J.Q. Deng, T. Li, K. Qi, J.D. Zhang, Q. Yi, J. Environ. Sci. China 116, 1 (2022)

    Article  PubMed  Google Scholar 

  49. Z.H. Diao, L. Yan, F.X. Dong, W. Qian, Q.H. Deng, L.J. Kong, J.W. Yang, Z.X. Lei, J.J. Du, W. Chu, Chem. Eng. J. 379, 122313 (2020)

    Article  CAS  Google Scholar 

  50. K. Wantala, T. Suwannaruang, J. Palalerd, P. Chirawatkul, N. Chanlek, S. Wannapaiboon, C. Saiyasombat, R. Khunphonoi, Surf Interfaces 25, 101286 (2021)

    Article  Google Scholar 

  51. F. Qi, W. Chu, B.B. Xu, Chem. Eng. J. 262, 552 (2015)

    Article  CAS  Google Scholar 

  52. P. Shukla, H.Q. Sun, S.B. Wang, H.M. Ang, M.O. Tade, Catal. Today 175, 380 (2011)

    Article  CAS  Google Scholar 

  53. Z.G. Zhou, H.M. Du, Z.H. Dai, Y. Mu, L.L. Tong, Q.J. Xing, S.S. Liu, Z.M. Ao, J.P. Zou, Chem. Eng. J. 374, 170 (2019)

    Article  CAS  Google Scholar 

  54. H.B. Hadjltaief, P. Da Costa, P. Beaunier, M.E. Galvez, M. Ben Zina, Appl. Clay Sci. 91, 46 (2014)

    Article  CAS  Google Scholar 

  55. S. Huang, X.Y. Guo, W.H. Duan, X.W. Cheng, X.G. Zhang, Z.Y. Li, J. Petrol. Sci. Eng. 174, 70 (2019)

    Article  CAS  Google Scholar 

  56. B.M. Liu, W.B. Song, H.X. Wu, Z.Y. Liu, Y. Teng, Y.J. Sun, Y.H. Xu, H.L. Zheng, Chem. Eng. J. 398, 125498 (2020)

    Article  CAS  Google Scholar 

  57. C.Q. Yu, M. Wen, S.H. Li, Z. Tong, Y.H. Yin, X.B. Liu, Y.S. Li, Z.P. Wu, D.D. Dionysiou, J. Hazard. Mater. 398, 122932 (2020)

    Article  CAS  PubMed  Google Scholar 

  58. R.Y. Xiao, J.Y. Ma, Z.H. Luo, W.Z. Zeng, Z.S. Wei, R. Spinney, W.P. Hu, D.D. Dionysiou, Environ. Pollut. 257, 113498 (2020)

    Article  CAS  PubMed  Google Scholar 

  59. J. Sharma, I.M. Mishra, D.D. Dionysiou, V. Kumar, Chem. Eng. J. 276, 193 (2015)

    Article  CAS  Google Scholar 

  60. Z.Q. Yang, Y. Li, X.Y. Zhang, X.D. Cui, S. He, H. Liang, A. Ding, Chem. Eng. J. 384, 123319 (2020)

    Article  CAS  Google Scholar 

  61. F. Gong, L. Wang, D.W. Li, F.Y. Zhou, Y.Y. Yao, W.T. Lu, S.Q. Huang, W.X. Chen, Chem. Eng. J. 267, 102 (2015)

    Article  CAS  Google Scholar 

  62. H.C. Song, Q. Li, Y.X. Ye, F. Pan, D.J. Zhang, D.S. Xia, Sep. Purif. Technol. 272, 118971 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Research and Development (R&D) Projects of Shanxi Province (No. 201803D31050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Gao.

Ethics declarations

Competing interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1757 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Q., Qin, L., Peng, X. et al. Insight to an efficient and magnetic α-Fe2O3/γ-Fe2O3/Cu2O hybrid catalysis for peroxymonosulfate: preparation, performance, and mechanism. Res Chem Intermed 48, 3753–3772 (2022). https://doi.org/10.1007/s11164-022-04791-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04791-w

Keywords

Navigation