Skip to main content

Advertisement

Log in

Optical, thermal and temperature dependent electrical properties of chlorinated natural rubber/copper alumina nanocomposites for flexible electrochemical devices

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The present investigation focuses on the optical, thermal, temperature-dependent alternating current (AC) and activation energy of chlorinated natural rubber (Cl-NR)/ copper alumina (Cu-Al2O3) nanocomposite systems. Temperature-dependent dielectric properties like dielectric permittivity, modulus and complex impedance were analyzed in the frequency region of 102 to 106 Hz. The effect of Cu-Al2O3 on the DC conductivities was correlated with various theoretical approaches like Scarisbrick, McCullough and Buche model. The surface behaviour of chlorinated NR with Cu-Al2O3 composites was analysed by contact angle measurements. The composite with 5 phr Cu-Al2O3 incorporated Cl-NR showed the least bandgap energy and maximum absorbance in the UV spectra. The TGA shows the thermal decomposition temperature of the rubber nanocomposite with an increase in the concentration of nanoparticles. The non-perfect linear plots obtained from AC conductivity showed the non-ohmic type of conduction in composite systems. The semiconducting nature was illustrated by the semi-circular Cole–Cole plot observed for Cl-NR/ Cu-Al2O3 composites. The lowest dielectric modulus was observed for the composite with 5 phr sample indicated the electron hopping conduction. Theoretical conductivity obtained from McCullough model was found to be best to explain the experimental DC conductivity. According to the results of this study, the Cl-NR/ Cu-Al2O3 nanocomposites can be a paramount alternative in the fabrication of important flexible dielectric materials like actuators, sensors, electromagnetic interference shielding and super-capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. F.H. Al-Shemmari, A.A. Rabah, E.A. Al-Mulla, N.O. Alrahman, Res. Chem. Intermed. 39, 4293 (2013)

    Article  CAS  Google Scholar 

  2. A. Nihmath, M.T. Ramesan, Res. Chem. Intermed. 46, 5049 (2020)

    Article  CAS  Google Scholar 

  3. A. Buttafava, G.M. Ghisoni, A. Faucitano, G. Negroni, A. Priola, F. Peditto, A. Turturro, M. Castellano, Res. Chem. Intermed. 28, 191 (2002)

    Article  CAS  Google Scholar 

  4. S.K. Tiwari, R.N. Choudhary, S.P. Mahapatra, J. Polym. Res. 20, 176 (2013)

    Article  Google Scholar 

  5. J. Saji, A. Khare, R.N. Choudhary, S.P. Mahapatra, J. Polym. Res. 21, 341 (2014)

    Article  Google Scholar 

  6. V.C. Jasna, M.T. Ramesan, Int. J. Plast. Technol. 23, 217 (2018)

    Article  Google Scholar 

  7. W. Zhou, J. Yi, J. Lin, S. Fang, X. Peng, Res. Chem. Intermed. 43, 3651 (2017)

    Article  CAS  Google Scholar 

  8. K. Parvathi, M.T. Ramesan, Res. Chem. Intermed. 48, 129 (2022)

    Article  CAS  Google Scholar 

  9. P.N. Dave, N.N. Patel, Res. Chem. Intermed. 39, 941 (2013)

    Article  CAS  Google Scholar 

  10. J.Q. Luo, S. Zhao, H.B. Zhang, Z. Deng, L. Li, Z.Z. Yu, Compos. Sci. Technol. 182, 107754 (2019)

    Article  CAS  Google Scholar 

  11. J. Yang, X. Liao, J. Li, G. He, Y. Zhang, W. Tang, G. Wang, G. Li, Compos. Sci. Technol. 181, 107670 (2019)

    Article  CAS  Google Scholar 

  12. G.T. Mohanraj, P.K. Dey, T.K. Chaki, A. Chakraborty, D. Khastgir, Polym. Compos. 28, 696 (2007)

    Article  CAS  Google Scholar 

  13. Z. Wang, J. Ren, R. Liu, X. Sun, D. Huang, W. Xu, J. Jiang, K. Ma, Y. Liu, Compos. Part A: Appl. Sci. Manufact. 136, 105957 (2020)

    Article  CAS  Google Scholar 

  14. H. Ismail, J. Elastom. Plast. 35, 149 (2003)

    Article  CAS  Google Scholar 

  15. M. Subburaj, M.T. Ramesan, P.P. Pradyumnan, A.I.P. Conf, Proced. 1620, 541 (2014)

    Google Scholar 

  16. Z.K. Ooi, H. Ismail, A.A. Bakar, Polym. Test. 37, 156 (2014)

    Article  CAS  Google Scholar 

  17. H. Balakrishnan, S.A. Attaran, M. Imran, A. Hassan, M.U. Wahit, J. Thermoplast. Compos. Mater. 27, 233 (2014)

    Article  CAS  Google Scholar 

  18. H. Ismail, S.Z. Salleh, Z. Ahmad, J. Elastom. Plast. 45, 445 (2013)

    Article  CAS  Google Scholar 

  19. V.C. Jasna, K. Priyanka, G. Mathew, M.T. Ramesan, J. Appl. Polym. Sci. 135, 46538 (2018)

    Article  Google Scholar 

  20. L. Liu, Y. Luo, D. Jia, W. Fu, B. Guo, J. Elastom. Plast. 38, 147 (2006)

    Article  CAS  Google Scholar 

  21. K. Parvathi, M.A. Al-Maghrabi, M. Subburaj, M.T. Ramesan, Polym. Compos. 42, 4586 (2021)

    Article  CAS  Google Scholar 

  22. A. Nihmath, M.T. Ramesan, Polym. Compos. 39, 2093 (2018)

    Article  CAS  Google Scholar 

  23. K. Parvathi, M.T. Ramesan, Polym. Compos. (2022)

  24. M.A. Ramazanov, F.V. Hajiyeva, Y.A. Babayev. G.V. Valadova, S.G. Nuriyeva, H.A. Shirinova, J. Elastom. Plast. 52, 159 (2020)

  25. K. Suhailath, B.K. Bahuleyan, M.T. Ramesan, J. Inorg. Organomet. Polym. Mater. 31, 365 (2021)

    Article  CAS  Google Scholar 

  26. R.D. Gould, T.S. Shafai, Thin. Solid. Film. 373, 89 (2000)

    Article  CAS  Google Scholar 

  27. P.F. Xavier, M.D. Benoy, S.K. Stephen, T. Varghese, J. Solid. State. Chem. 300, 122232 (2021)

    Article  CAS  Google Scholar 

  28. R. Kawashima, R. Takahasi, H. Isoda, J. Solid. State. Chem. 121, 74 (1996)

    Article  CAS  Google Scholar 

  29. E. Şentürk, J. Solid. State. Chem. 177, 1508 (2004)

    Article  Google Scholar 

  30. M.L. Verma, H.D. Sahu, Ionics 21, 3223 (2015)

    Article  CAS  Google Scholar 

  31. M. Khatun, E. Kabir, J. Adv. Dielect. 11, 2150015 (2021)

    Article  CAS  Google Scholar 

  32. A.M. Youssef, S.M. Yakout, J. Solid. State. Chem. 13, 122902 (2022)

    Article  Google Scholar 

  33. A.S. Marf, R.M. Abdullah, S.B. Aziz, Membranes 10, 71 (2020)

    Article  CAS  Google Scholar 

  34. S. Iqbal, M. Younas, M. ul Hassan, H.J. Ryu, M.A. Anjum, M.A. Farhan, M. Nadeem, J.I. Yun, Chem. Phys. Lett. 771, 138507 (2021)

  35. H.J. Woo, S.R. Majid, A.K. Arof, Mater. Chem. Phys. 134, 755 (2012)

    Article  CAS  Google Scholar 

  36. F. Bueche, J. Appl. Phys. 43, 4837 (1972)

    Article  CAS  Google Scholar 

  37. K. Suhailath, M. Thomas, M.T. Ramesan, Polym. Polym. Compos. 29, 1200 (2021)

    CAS  Google Scholar 

  38. K. Suhailath, M. Thomas, M.T. Ramesan, Res. Chem. Intermed. 46, 2579 (2020)

    Article  CAS  Google Scholar 

  39. M. Rahaman, T.K. Chaki, D. Khastgir, Compos. Sci. Technol. 72, 1575 (2012)

    Article  CAS  Google Scholar 

  40. R.L. McCullough, Compos. Sci. Technol. 22, 3 (1985)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author (M. T. Ramesan) greatly acknowledges the financial assistance from Kerala State Council for Science, Technology and Environment, Government of Kerala, India (Order No.566/2017/KSCSTE)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Ramesan.

Ethics declarations

Conflict of interest

The authors of this article have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvathi, K., Bahuleyan, B.K. & Ramesan, M.T. Optical, thermal and temperature dependent electrical properties of chlorinated natural rubber/copper alumina nanocomposites for flexible electrochemical devices. Res Chem Intermed 48, 3897–3914 (2022). https://doi.org/10.1007/s11164-022-04790-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04790-x

Keywords

Navigation