Skip to main content
Log in

Three coordination polymers of manganese(II), cadmium(II) with a flexible ligand of cis, cis, cis-1,2,3,4-cyclopentanetetracarboxylic acid: crystal structures, thermal decomposition mechanisms and magnetic properties

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The synthesized condition by means of controlling pH values of the reaction mixtures has been explored. Three Mn2+, Cd2+ ion coordination polymers with the fully deprotonated cis, cis, cis-1,2,3,4-cyclopentanetetracarboxylic acid (H4L) ligand were synthesized and characterized, sometimes incorporating different auxiliary ligand: {[Mn(H2O)6][Mn3(L)2(H2O)2]}·3H2O (1), [Cd2L(H2O)4] (2) and [Cd2Lphen)2(H2O)2]·3H2O (3) (phen = 1,10-phenanthroline). With an initial of pH values of 6.0, 4.0 and 9.0 of the reaction mixtures, we get the compounds 1, 2 and 3, respectively. In crystal of 1, two crystallographic different Mn2+ ions (Mn1 and Mn2) form a negatively charged coordination polymeric chain, which contains a centrosymmetrically linear trinuclear Mn2+ cluster (Mn3L2) subunit; another crystallographically independent Mn2+ ions (Mn3) coordinated by six water molecules act as counter ions to link the neighboring coordination polymeric chains via intermolecular H-bond interactions. The Mn2+ ions in 1 were completely replaced by Cd2+ ions to give 2 and 3, respectively. Complex 2 shows 3D distributions of Cd2+ ions while Complex 3 displays 2D networks contributed by intermolecular H-bond interactions. Three complexes exhibit distinct thermal decomposition mechanisms, and the deprotonated cis, cis, cis-1,2,3,4-cyclopentan-etetracarboxylic acid ligands decompose in 420–700 °C to give the residue MnO + C in 1 and CdO in 2 and in 3. Complex 1 shows a complicated magnetic behavior of coexistence of antiferromagnetic exchange interactions between neighboring Mn2+ ions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10

Similar content being viewed by others

References

  1. G.R.A. Wyllie, W.R. Scheidt, Chem. Rev. 102, 1067 (2002)

    Article  CAS  PubMed  Google Scholar 

  2. F.R. Keene, Coord. Chem. Rev. 166, 121 (1997)

    Article  CAS  Google Scholar 

  3. N.J. Castellanos, H. Martinez, F. Martinez, K. Leus, P.V. Voort, Res. Chem. Intermed. 47, 4227 (2021)

    Article  CAS  Google Scholar 

  4. L. Perez-Garcia, D.B. Amabilino, Chem. Soc. Rev. 36, 941 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. S.S. Rad, H. Saeidiroshan, B.M. Eshkevari, M.A. Ghasemzadeh, Res. Chem. Intermed. 47, 2143 (2021)

    Article  CAS  Google Scholar 

  6. S. Nagahama, T. Tanaka, A. Matsumoto, Angew. Chem. 116, 3899 (2004)

    Article  Google Scholar 

  7. S. Noro, S. Kitagawa, M. Kondo, K. Seki, Angew. Chem. Int. Ed. 39, 2081 (2000)

    Article  CAS  Google Scholar 

  8. M.J. Zaworotko, Angew. Chem. Int. Ed. 39, 2113 (2000)

    Article  Google Scholar 

  9. B. Li, R.J. Wei, J. Tao, R.B. Huang, L.S. Zheng, Z.P. Zheng, J. Am. Chem. Soc. 132, 1558 (2010)

    Article  CAS  PubMed  Google Scholar 

  10. H.C. Zhou, S. Kitagawa, Chem. Soc. Rev. 43, 5415 (2014)

    Article  CAS  PubMed  Google Scholar 

  11. S.T. Zheng, G.Y. Yang, Dalton Trans. 39, 700 (2010)

    Article  CAS  PubMed  Google Scholar 

  12. A.C. Kathalikkattil, Y. Gu, J.F. Kurisingal, H. Lee, H. Kim, Y. Choe, D.W. Park, Res. Chem. Intermed. 47, 3979 (2021)

    Article  CAS  Google Scholar 

  13. D.K. Wang, Z.H. Li, Res. Chem. Intermed. 43, 5169 (2017)

    Article  CAS  Google Scholar 

  14. M. Ding, R.W. Flaig, H.L. Jiang, O.M. Yaghi, Chem. Soc. Rev. 48, 2783 (2019)

    Article  CAS  PubMed  Google Scholar 

  15. R.Q. Zou, H. Sakurai, S. Han, R.Q. Zhong, Q. Xu, J. Am. Chem. Soc. 129, 8402 (2007)

    Article  CAS  PubMed  Google Scholar 

  16. R. Kitaura, S. Kitagawa, Y. Kubota, T.C. Kobayashi, K. Kindo, Y. Mita, A. Matsuo, M. Kobayashi, H.C. Chang, T.C. Ozawa, M. Suzuki, M. Sakata, M. Takata, Science 298, 2358 (2002)

    Article  CAS  PubMed  Google Scholar 

  17. H. Furukawa, K.E. Cordova, M. O’Keefe, O.M. Yaghi, Science 341, 1230444 (2013)

    Article  PubMed  CAS  Google Scholar 

  18. X.L. Li, K. Chen, Y. Liu, Z.X. Wang, T.W. Wang, J.L. Zuo, Y.Z. Li, Y. Wang, J.S. Zhu, J.M. Liu, Y. Song, X.Z. You, Angew. Chem. Int. Ed. 46, 6820 (2007)

    Article  CAS  Google Scholar 

  19. J.Y. Hu, J.A. Zhao, Q.Q. Guo, H.W. Hou, Y.T. Fan, Inorg. Chem. 49, 3679 (2010)

    Article  CAS  PubMed  Google Scholar 

  20. H. Hou, Y. Wei, Y. Song, L. Mi, M. Tang, L. Li, Y. Fan, Angew. Chem. Int. Ed. 44, 6067 (2005)

    Article  CAS  Google Scholar 

  21. W. Chen, H.M. Yuan, J.Y. Wang, Z.Y. Liu, J.J. Xu, M. Yang, J.S. Chen, J. Am. Chem. Soc. 125, 9266 (2003)

    Article  CAS  PubMed  Google Scholar 

  22. J. Yan, J. Gao, D.L. Long, H.N. Miras, L. Cronin, J. Am. Chem. Soc. 132, 11410 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. A.K. Srivastava, G. Panda, Chem. Eur. J. 14, 4675 (2008)

    Article  CAS  PubMed  Google Scholar 

  24. A. Mlodzianowska, L. Latos-Grazynski, L. Szterenberg, Inorg. Chem. 47, 6364 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. S. Ma, D. Sun, J.M. Simmons, C.D. Collier, D. Yuan, H.C. Zhou, J. Am. Chem. Soc. 130, 1012 (2008)

    Article  CAS  PubMed  Google Scholar 

  26. B.H. Ye, M.L. Tong, X.M. Chen, Coord. Chem. Rev. 249, 545 (2005)

    Article  CAS  Google Scholar 

  27. K.P. Rao, A. Thirumurugan, C.N.R. Rao, Chem. Eur. J. 13, 3193 (2007)

    Article  CAS  PubMed  Google Scholar 

  28. X.Y. Wang, S.C. Sevov, Chem. Mater. 19, 3763 (2007)

    Article  CAS  Google Scholar 

  29. L.F. Ma, L.Y. Wang, F. Zhong, Synth. React. Inorg. Metal-Org. Chem. 38, 455 (2008)

    Article  CAS  Google Scholar 

  30. L. Zhang, J. Zhang, Z.J. Li, Y.Y. Qin, Q.P. Lin, Y.G. Yao, Chem. Eur. J. 15, 989 (2009)

    Article  CAS  PubMed  Google Scholar 

  31. J. Luo, F. Jiang, R. Wang, M. Hong, Inorg. Chem. Commun. 7, 638 (2004)

    Article  CAS  Google Scholar 

  32. B.S. Randhawa, M. Kaur, J. Therm. Anal. Calorim. 89, 251 (2007)

    Article  CAS  Google Scholar 

  33. J. Wang, L.L. Zheng, C.J. Li, Y.Z. Zheng, M.L. Tong, Cryst. Growth Des. 6, 357 (2006)

    Article  CAS  Google Scholar 

  34. J. Wang, S. Hu, M.L. Tong, Eur. J. Inorg. Chem. 10, 2069 (2006)

    Article  CAS  Google Scholar 

  35. J. Wang, Z.J. Lin, Y.C. Ou, Y. Shen, R. Herchel, M.L. Tong, Chem. Eur. J. 14, 7218 (2008)

    Article  CAS  PubMed  Google Scholar 

  36. L.F. Huang, C.C. Ji, Z.Z. Lu, X.Q. Yao, J.S. Hu, H.G. Zheng, Dalton Trans. 40, 3183 (2011)

    Article  CAS  PubMed  Google Scholar 

  37. C.S. Liu, E.C. Sañudo, M. Hu, L.M. Zhou, L.Q. Guo, S.T. Ma, L.J. Gao, S.M. Fang, CrystEngComm 12, 853 (2010)

    Article  CAS  Google Scholar 

  38. SAINT, Version 6.02a; Bruker AXS Inc.: Madison, W1, 2002.

  39. G. M. Sheldrick, SADABS, Program for Bruker Area Detector Absorption Correction, University of Göttingen, Göttingen, Germany, (1997)

  40. G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution, University of Göttingen, Göttingen, Germany, (1997)

  41. G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, Göttingen, Germany, (1997)

  42. K.L. Zhang, J.B. Yuan, L.J. Yuan, J.T. Sun, Chinese. J. Inorg. Chem. 15, 549 (1999)

    CAS  Google Scholar 

  43. X.M. Ren, T. Akutagawa, S. Noro, S. Nishihara, T. Nakamura, Y. Yoshida, K. Inoue, J. Phys. Chem. B 109, 7671 (2006)

    Article  CAS  Google Scholar 

  44. O. Kahn, Molecular Magnetism (Wiley-VCH, New York, 1993)

    Google Scholar 

  45. T.C. Higgs, K. Spartalian, C.J.O. Connor, B.F. Matzanke, C.J. Carrano, Inorg. Chem. 37, 2263 (1998)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work supported by Grants from the Natural Science Research Project of Anhui Provincial Department of Education (KJ2012B178, KJ2012ZD11, KJ2021A145), Science Research Project of Huangshan University (2012xkjq010) and the National Undergraduate Training Program for Innovation and Entrepreneurship (202010375004, 202010375015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang-Fang Huang or Chang-Jiang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 858 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, LF., Qi, ZP. & Li, CJ. Three coordination polymers of manganese(II), cadmium(II) with a flexible ligand of cis, cis, cis-1,2,3,4-cyclopentanetetracarboxylic acid: crystal structures, thermal decomposition mechanisms and magnetic properties. Res Chem Intermed 48, 3867–3882 (2022). https://doi.org/10.1007/s11164-022-04784-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04784-9

Keywords

Navigation