Skip to main content
Log in

Preparation of active carbon through one-step NaOH activation of coconut shell biomass for phenolic wastewater treatment

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A series of coconut shell-based activated carbon (BAC-T) adsorbents with different activation temperature (T, °C) were prepared by one-step NaOH activation of coconut shell carbon (BAC) for phenol adsorption. The effects of activation temperature and adsorption conditions (adsorbent dosage, adsorption temperature and pH value) on removal of phenol onto BAC-T adsorbents were investigated systematically. Results showed that the BAC-800 prepared at the activation temperature of 800 °C was found to possess the highest specific surface area of 1069 m2·g−1. Up to 97.7% phenol removal rate was achieved with BAC-800 under the optimized conditions. The phenol removal rate onto BAC-T positively correlated to the surface area. Compared with the parent BAC, the adsorption rate has been significantly improved after activation due to the increase in surface area and pore volume, as well as formation of more graphite C–C bond on the surface of BAC-T. The zero point of charge of BAC-800 is 7.2 and therefore natural solution is beneficial to achieve high phenol removal rate. Additionally, the phenol adsorption onto BAC-800 fitted well with pseudo-first-order kinetics model and Langmuir isothermal adsorption model, suggesting the monolayer adsorption behavior is dominant. The BAC-800 showed high adsorption maximum capacity of 300 mg·g−1 for phenol which is much higher than those of reported data. The adsorption is mainly through the ππ and hydrogen bond interactions, and hydrophobic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K. Nath, S. Panchani, M.S. Bhakhar, S. Chatrola, Environ. Sci. Pollut. Res. 20, 6 (2013)

    Article  Google Scholar 

  2. M. Ahmaruzzaman, Adv. Colloid Interface Sci. 143, 1 (2008)

    Article  Google Scholar 

  3. Q. Xiong, Q. Bai, C. Li, Y. He, Y. Shen, H. Uyama, RSC Adv. 8, 14 (2018)

    Google Scholar 

  4. X. Kong, H. Gao, X. Song, Y. Deng, Y. Zhang, Chem. Phys. Lett. 739, 137046 (2020)

    Article  CAS  Google Scholar 

  5. J. Zhang, M. Xie, H. Zhao, L.R. Zhang, G. Wei, G. Zhao, Chemosphere 269, 129404 (2021)

    Article  CAS  PubMed  Google Scholar 

  6. R. Hu, S. Dai, D. Shao, A. Alsaedi, B. Ahmad, X. Wang, J. Mol. Liq. 203, 80 (2015)

    Article  CAS  Google Scholar 

  7. A. Supong, P.C. Bhomick, R. Karmaker, S.L. Ezung, L. Jamir, U.B. Sinha, D. Sinha, Appl. Surf. Sci. 529, 147046 (2020)

    Article  CAS  Google Scholar 

  8. Y. Yang, X. Li, C. Zhou, W. Xiong, G. Zeng, D. Huang, C. Zhang, W. Wang, B. Song, X. Tang, X. Li, H. Guo, Water Res. 184, 116200 (2020)

    Article  CAS  PubMed  Google Scholar 

  9. M. Nemiwal, V. Gosu, T.C. Zhang, D. Kumar, Int. J. Hydrogen Energy 46, 17 (2021)

    Google Scholar 

  10. A.K. Singh, M. Bilal, H.M.N. Iqbal, A.S. Meyer, A. Raj, Sci. Total Environ. 777, 145988 (2021)

    Article  CAS  PubMed  Google Scholar 

  11. J. Huang, X. Jin, S. Deng, Chem. Eng. J. 192, 192 (2012)

    Article  CAS  Google Scholar 

  12. N. Yousefi, X. Lu, M. Elimelech, N. Tufenkji, Nat. Nanotechnol 14, 2 (2019)

    Article  Google Scholar 

  13. M. Anbia, S. Amirmahmoodi, Sci. Iran 18, 3 (2011)

    Article  Google Scholar 

  14. S. Dhakaa, R. Kumara, A. Deep, M.B. Kurade, S.-W. Ji, B.-H. Jeon, Coordin. Chem. Rev. 380, 2019 (2018)

    Google Scholar 

  15. S.F. Lütke, A.V. Igansi, L. Pegoraro, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadaval, J. Environ. Chem. Eng. 7, 5 (2019)

    Article  Google Scholar 

  16. H. Liu, G.E. Kim, C.O. Hong, Y.C. Song, W.K. Lee, D. Liu, S.H. Jang, Y.K. Park, Chemosphere 271, 129595 (2021)

    Article  CAS  PubMed  Google Scholar 

  17. Q. Miao, Y. Tang, J. Xu, X. Liu, L. Xiao, Q. Chen, J. Taiwan Inst. Chem. E 44, 3 (2013)

    Article  Google Scholar 

  18. N. Douara, B. Bestani, N. Benderdouche, L. Duclaux, Desalin Water Treat 57, 12 (2015)

    Google Scholar 

  19. N.G. Rincón-Silva, J.C. Moreno-Piraján, L.G. Giraldo, J. Chem. 2015, 1 (2015)

    Article  Google Scholar 

  20. Y. Zhang, K. Pa, Z.S. Tang, X.Z. Song, Chinese Rice 25(5), (2019)

  21. S. Álvarez-Torrellas, A. Rodríguez, G. Ovejero, J. García. Chem. Eng. J. 283, 936 (2016)

    Article  Google Scholar 

  22. Y. Zhou, X. Liu, Y. Xiang, P. Wang, J. Zhang, F. Zhang, J. Wei, L. Luo, M. Lei, L. Tang, Bioresource Technol. 245, 266 (2017)

    Article  CAS  Google Scholar 

  23. A. Namane, A. Mekarzia, K. Benrachedi, N. Belhaneche-Bensemra, A. Hellal, J. Hazard Mater. 119, 1–3 (2005)

    Article  Google Scholar 

  24. H.S.B.G. McKAY, J.R. Gardner, J. Appl. Polym. Sci. 27, 3043 (1982)

    Article  CAS  Google Scholar 

  25. L.M. a, F.A. a., A.R.M. b. and E.-P.N. Micropor. Mesopor. Mat. 197, (2014)

  26. J. Diaz-Terán, D.M. Nevskaia, J.L.G. Fierro, A.J. López-Peinado, A. Jerez, Micropor. Mesopor. Mat. 60, 1–3 (2003)

    Article  Google Scholar 

  27. D. Lozano-Castelló, J.M. Calo, D. Cazorla-Amorós, A. Linares-Solano, Carbon 45, 13 (2007)

    Article  Google Scholar 

  28. H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Fuel 86, 12–13 (2007)

    Google Scholar 

  29. T.A. a, L.J.K. b. , J.J.V. a. and G.S. c. J. Ind. Eng. Chem. 19, (2013)

  30. W. Zhang, J. Yin, Z. Lin, H. Lin, H. Lu, Y. Wang, W. Huang, Electrochim. Acta 176, 1136 (2015)

    Article  CAS  Google Scholar 

  31. Y. Zhang, Z. Ma, Q. Zhang, J. Wang, and Q. Ma. BioResources 12(3), (2017)

  32. K. Nath, S. Panchani, M.S. Bhakhar, S. Chatrola, Environ. Sci. Pollut. Res. Int. 20, 6 (2013)

    Article  Google Scholar 

  33. L.W. Yam, L. Lim, S. Hosseini, T.S.Y. Choong, Desalin Water Treat 57, 9 (2015)

    Google Scholar 

  34. J.-H. Zhou, Z.-J. Sui, J. Zhu, P. Li, D. Chen, Y.-C. Dai, W.-K. Yuan, Carbon 45, 4 (2007)

    Google Scholar 

  35. Y. Fan, B. Wang, S. Yuan, X. Wu, J. Chen, L. Wang, Bioresource Technol. 101, 19 (2010)

    Article  Google Scholar 

  36. J. Wang, S. Lei, L. Liang, Appl. Surf. Sci. 530, 147187 (2020)

    Article  CAS  Google Scholar 

  37. A.L. Cazetta, A.C. Martins, O. Pezoti, K.C. Bedin, K.K. Beltrame, T. Asefa, V.C. Almeida, Chem. Eng. J. 300, 54 (2016)

    Article  CAS  Google Scholar 

  38. M. Zhang, C. Xiao, C. Zhang, J. Qi, C. Wang, X. Sun, L. Wang, Q. Xu, J. Li, ACS ES&T Eng. 1, 2 (2020)

    Google Scholar 

  39. Y. Zhang, H. Gao, X. Song, X. Kong, H. Xu, ChemElectroChem 6, 21 (2019)

    Google Scholar 

  40. J.-C. Chou, L.P. Liao, Thin Solid Films 476, 1 (2005)

    Article  Google Scholar 

  41. T. Van Tran, Q.T.P. Bui, T.D. Nguyen, N.T.H. Le, L.G. Bach, Adsorpt. Sci. Technol. 35, 1 (2016)

    Google Scholar 

  42. L.G. Bach, T. Van Tran, T.D. Nguyen, T. Van Pham, S.T. Do, Res. Chem. Intermed. 44, 3 (2018)

    Article  Google Scholar 

  43. T.V. Tran, V.D. Cao, V.H. Nguyen, B.N. Hoang, D.-V.N. Vo, T.D. Nguyen, L.G. Bach, J. Environ. Chem. Eng. 8, 1 (2020)

    Google Scholar 

  44. L. Qi, H. Jiang, T. Lin, X. Chang, and B. Jiang. J. Taiwan Inst. Chem. E 126, (2021)

  45. K.P. Singh, A. Malik, S. Sinha, P. Ojha, J. Hazard Mater. 150, 3 (2008)

    Article  Google Scholar 

  46. I. Anastopoulos, G.Z. Kyzas, J. Mol. Liq. 218, 174 (2016)

    Article  CAS  Google Scholar 

  47. P. Sharma, N. Hussain, D.J. Borah, M.R. Das, J. Chem. Eng. Data 58, 12 (2013)

    Google Scholar 

  48. S. Zeng, S. Duan, R. Tang, L. Li, C. Liu, D. Sun, Chem. Eng. J. 258, 218 (2014)

    Article  CAS  Google Scholar 

  49. E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos, J. Mol. Liq. 273, 425 (2019)

    Article  CAS  Google Scholar 

  50. L. Spessato, K.C. Bedin, A.L. Cazetta, I. Souza, V.A. Duarte, L.H.S. Crespo, M.C. Silva, R.M. Pontes, V.C. Almeida, J. Hazard Mater. 371, 499 (2019)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wang, Y., Liu, Y. et al. Preparation of active carbon through one-step NaOH activation of coconut shell biomass for phenolic wastewater treatment. Res Chem Intermed 48, 1665–1684 (2022). https://doi.org/10.1007/s11164-021-04650-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-021-04650-0

Keywords

Navigation