Skip to main content

Influence of microbubbles on free radical generation by ultrasound in aqueous solution: implication of the important roles of nanobubbles

Abstract

Although research on microbubbles (MBs) has intrigued a lot of researchers, very few studies have been done about the influences of MBs on the free radical formation and also on the degradation rates of organic compounds by ultrasonic irradiation. Here we report the degradation of Acid Orange 7 by the ultrasound irradiation in the solution of MBs for the first time. It was found that acceleration of the degradation rate of Acid Orange 7 was observed only for the 45 kHz ultrasonic irradiation to the microbubble solution. Dependence of gases inside the MBs on the sonochemical efficiencies with the existence of MBs was also measured using the KI method and it was found that the dependence of the sonochemical efficiencies on gases inside the MBs was in the order of Kr > Ar ~ N2 > O2 > He, supporting the conclusions that the observed phenomena were due to the cavitation by the 45 kHz ultrasonic irradiation. The dependences of ultrasonic frequency and power were investigated using various commercially available ultrasonic oscillators, and the influence of the size distribution of microbubbles on the sonochemical efficiencies was further investigated using a flow reactor system with two ultrasound generators. Finally, we showed that the frequency of the ultrasound was more sensitive than the size of microbubbles for the sonochemical enhancement by the 45 kHz ultrasonic irradiation to the solution of MBs and then discussed possible roles of nanobubbles in the presently observed phenomena.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    K.S. Suslick, Science 247, 1439 (1990)

    CAS  Article  Google Scholar 

  2. 2.

    Y.T. Didenko, W.B. McNamara, K.S. Suslick, J. Am. Chem. Soc. 121, 5817 (1999)

    CAS  Article  Google Scholar 

  3. 3.

    M. Ashokkumar, Ultrasonic. Sonochem. 18, 864 (2011)

    CAS  Article  Google Scholar 

  4. 4.

    X. Fang, G. Mark, M.C. Sonntag, Ultrasonic. Sonohem. 3, 57 (1996)

    CAS  Article  Google Scholar 

  5. 5.

    G. Narkm, A. Tauber, R. Laupert, H.P. Schuchmann, D. Shultz, A. Mues, C. Sonntag, Ultrasonic. Sonochem. 5, 41 (1998)

    Article  Google Scholar 

  6. 6.

    L.H. Thompson, L.K. Doraiswamy, Ind. Eng. Chem. Res. 38, 1215 (1999)

    CAS  Article  Google Scholar 

  7. 7.

    N. Pokhrel, P.K. Vabbina, N. Pala, Ultrasonic. Sonochem. 29, 104 (2016)

    CAS  Article  Google Scholar 

  8. 8.

    R.J. Wood, J. Lee, M.J. Bussemaker, Ultrasonic. Sonochem. 38, 351 (2017)

    CAS  Article  Google Scholar 

  9. 9.

    S. Koda, T. Kimura, T. Kondo, H. Mitome, Ultrasonic. Sonochem. 10, 149 (2003)

    CAS  Article  Google Scholar 

  10. 10.

    N.M. Navarro, T. Chave, P. Pochon, I. Bisel, S.I. Nikitenko, J. Phys. Chem. B. 115, 2024 (2011)

    CAS  Article  Google Scholar 

  11. 11.

    A. Agarwal, W.J. Ng, Y. Liu, Chemosphere 84, 1175 (2011)

    CAS  Article  Google Scholar 

  12. 12.

    Y.J. Choi, Y.J. Kim, K. Nam, Environ. Pollut. 157, 2197 (2009)

    CAS  Article  Google Scholar 

  13. 13.

    E.G. Schutt, D.H. Klein, R.M. Mattrey, J.G. Riess, Angew. Chem. Int. Ed. 42, 3218 (2003)

    CAS  Article  Google Scholar 

  14. 14.

    M. Takahashi, J. Phys. Chem. B. 109, 21858 (2009)

    Article  Google Scholar 

  15. 15.

    M. Takahashi, K. Chiba, P. Li, J. Phys. Chem. B. 111, 1343 (2007)

    CAS  Article  Google Scholar 

  16. 16.

    P. Li, M. Takahashi, K. Chiba, Chemosphere 75, 1371 (2009)

    CAS  Article  Google Scholar 

  17. 17.

    D. Kobayashi, Y. Hayashida, K. Sano, K. Terasaka, Ultrasonic. Sonochem. 18, 1193 (2011)

    CAS  Article  Google Scholar 

  18. 18.

    T.G. Leighton, The acoustic bubble (Academic Press, New York, 1994). https://doi.org/10.1016/B978-0-12-441920-9.X5001-9

  19. 19.

    D. Kobayashi, Y. Hayashida, K. Sano, Ultrasonics 54, 1425 (2014)

    CAS  Article  Google Scholar 

  20. 20.

    N. Masuda, A. Maruyama, T. Eguchi, T. Hirakawa, Y. Murakami, J. Phys. Chem. B. 119, 12887 (2015)

    CAS  Article  Google Scholar 

  21. 21.

    G.L. Newton, R. Milligan, Radiat. Phys. Chem. 75, 473 (2006)

    CAS  Article  Google Scholar 

  22. 22.

    J. Zhang, Y. Nosaka, J. Phys. Chem. C 118, 10824 (2014)

    CAS  Article  Google Scholar 

  23. 23.

    A.S. Ozen, V. Aviyente, G. Tezeanli-Guyer, J. Phys. Chem. A. 109, 3506 (2005)

    Article  Google Scholar 

  24. 24.

    Z. Eren, N. Ince J. Hazardous. Mater. 177, 1019 (2010)

    CAS  Article  Google Scholar 

  25. 25.

    M. Matouq, Z. Anber, S. Nii, T. Tagawa, H. Karapanagioti, Sep. Purif. Technol. 135, 42 (2014)

    CAS  Article  Google Scholar 

  26. 26.

    K. Okitsu, K. Iwasaki, Y. Yobiki, H. Bandoow, R. Nishimura, Y. Maeda, Ultrasonics. Sonochem. 12, 255 (2005)

    CAS  Article  Google Scholar 

  27. 27.

    E.L. Mead, R.G. Sutherland, R.E. Verrall, Can. J. Chem. 54, 1114 (1976)

    CAS  Article  Google Scholar 

  28. 28.

    J. Rooze, E.V. Rebrov, J.C. Schouten, J.T.F. Keurentjes, Ultrasonic. Sonochem. 20, 1 (2013)

    CAS  Article  Google Scholar 

  29. 29.

    K. Okitsu, T. Suzuki, N. Takenaka, H. Bandow, R. Nishimura, Y. Maeda, J. Phys. Chem. B. 110, 20081 (2006)

    CAS  Article  Google Scholar 

  30. 30.

    I. Hua, M.R. Hoffmann, Environ. Sci. Technol. 31, 2237 (1997)

    CAS  Article  Google Scholar 

  31. 31.

    T. Kondo, J. Gamson, J.B. Mitchell, P. Riesz, Int. J. Radiat. Biol. 54, 955 (1988)

    CAS  Article  Google Scholar 

  32. 32.

    J.W. Kang, H.M. Hung, A. Lin, Environ. Sci. Technol. 33, 3199 (1999)

    CAS  Article  Google Scholar 

  33. 33.

    H. Zhang, L. Duan, Z. Daobin, Ultrasonic. Sonochem. 14, 552 (2007)

    CAS  Article  Google Scholar 

  34. 34.

    K. Yasuda, H. Matsushima, Y. Asakura, Chem. Eng. Sci. 195, 455 (2019)

    CAS  Article  Google Scholar 

  35. 35.

    C.R. Mo, J. Wang, Z. Fang, L.M. Zhou, L.J. Zhang, J. Hu, Chinese. Phys. B. 27, 118104 (2018)

    CAS  Article  Google Scholar 

  36. 36.

    X. Bu, M. Alheshibin, Ultrasonic. Sonochem. 76, 105629 (2021)

    CAS  Article  Google Scholar 

  37. 37.

    T. Makuta, Y. Aizawa, R. Suzuki, Ultrasonic. Sonochem. 20, 997 (2013)

    CAS  Article  Google Scholar 

  38. 38.

    T. Yamamoto, S. Hatanaka, S. Komarov, Ultrasonics. 58, 104684 (2019)

    CAS  Google Scholar 

  39. 39.

    M. Minnaert, Phil. Mag. 16, 235 (1993)

    Article  Google Scholar 

  40. 40.

    J. Jin, R. Wang, J. Tang, L. Yang, Z. Feng, C. Xu, F. Yang, N. Gu, Colloid. Surf. A. 589, 124430 (2020)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

One of the authors gratefully acknowledged for the financial support by Grand-in-Aid for Scientific Research (KAKENHI C,20K05215) and (KAHENHI C, 16K06849) from the Ministry of Education, Culture, Sports, Science and Technology, and the financial support by Uchida Energy Science Promotion and the Foundation for Japanese Chemical Research. One of the authors also gratefully acknowledged the kind help of Prof. Akiomi Ushida for the provision of the apparatus used in the present work. A fruitful discussion with Prof. Takashi Hata, National Institute of Technology, Kochi College, and Prof. Keiji Yasuda, Nagoya University, is also much appreciated.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Murakami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsuchida, K., Maruyama, A., Kobayashi, Y. et al. Influence of microbubbles on free radical generation by ultrasound in aqueous solution: implication of the important roles of nanobubbles. Res Chem Intermed (2021). https://doi.org/10.1007/s11164-021-04612-6

Download citation

Keywords

  • Microbubble
  • Ultrasound
  • OH radical
  • Azo dye
  • Rare gas
  • Frequency dependence
  • Nanobubble