Skip to main content

Synthesis, X-ray diffraction, thermal behavior and physicochemical studies of phase transitions before the decomposition in the new phosphate tellurate protonic conductor compound

Abstract

A new mixed compound, sodium rubidium phosphate tellurate, was elaborated using the slow evaporation method at room temperature, confirmed by X-ray single-crystal diffraction. The single-crystal X-ray diffraction structure of Na2.64Rb0.36PO4.Te(OH)6 is identified for the first time. At 298 K, structural analysis indicates that this compound crystallizes in the monoclinic system with P63 space group. The main feature of these atomic arrangements lies in the coexistence of two different anions (PO\(_{4}^{3 - }\) and TeO\(_{6}^{6 - }\) groups) in the unit cell, connected by hydrogen bonds which build up the crystal. The O–H…O hydrogen bonds between Te(OH)6 octahedrons and PO4 tetrahedral contribute to the cohesion and the stability of the atomic arrangement. The Na et Rb atoms are intercalating between their planes. The Fourier transform infrared spectrum exhibited characteristic bands corresponding to the tellurate and phosphate group. Thermal studies were carried out to examine the obtained material and yielded the presence of three phase transitions. The protonic conduction phase transition due to the presence of the breaking of O–H…O hydrogen bonds, was regarded as a technologically significant aspect for the new compound. These results corroborate that the new phosphate tellurate can be considered as a promising material in terms of enacting fruitful and constructive applications in advanced technology. The crystal structure was built up from corner-sharing TeOH6 octahedrons, which intercalated by PO4 tetrahedral units. These two groups are connected by hydrogen bonds which make up the building of the crystal, and the Na et Rb atoms are sandwitched between tetrahedral and Te(OH)6 octahedral planes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    B. Bazan, J.L. Mesa, J.L. Pizarro, L. Lezama, A. Pena, M.L. Arriortua, T. Roja, J. Solid State Chem. 179, 1459 (2006)

    CAS  Article  Google Scholar 

  2. 2.

    R.K. Brow, J. Non-Cryst. Solids 263, 1 (2000)

    Article  Google Scholar 

  3. 3.

    S.W. Martin, J. Am. Ceram. Soc 74, 1767 (1991)

    CAS  Article  Google Scholar 

  4. 4.

    A. Kalaji, S. Skanthakumar, M.G. Kanatzidis, J.F. Mitchell, L. Soderholm, Inorg. Chem. 53, 6321 (2014)

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    A. Kalaji, L. Soderholm, Inorg. Chem. 53, 11252 (2014)

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    J. Lin, K. Diefenbach, J.N. Cross, J.M. Babo, T.E. Albrecht-Schmitt, Inorg. Chem. 52, 13278 (2013)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    J. Lin, K. Diefenbach, N. Kikugawa, R.E. Baumbach, T.E. Albrecht-Schmitt, Inorg. Chem. 53, 8555 (2014)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    L. Ktari, M. Dammak, A. Hadrich, A. Cousson, M. Nierlich, F. Romain, T. Mhiri, Solid State Sci. 6, 1393 (2004)

    CAS  Article  Google Scholar 

  9. 9.

    A. Elferjani, S. Garcia-Granda, M. Dammak, J. Res. Chem. Intermed. 45, 1357 (2018)

    Article  CAS  Google Scholar 

  10. 10.

    A. Elferjani, S. Garcia-Granda, M. Dammak, J. Alloys Compd. 749, 448 (2018)

    CAS  Article  Google Scholar 

  11. 11.

    H. Khemakhem, Ferroelectrics 234, 47 (1999)

    CAS  Article  Google Scholar 

  12. 12.

    L. Ktari, M. Dammak, A. Madani, T. Mhiri, Solid State Ion. 145, 225 (2001)

    CAS  Article  Google Scholar 

  13. 13.

    R. Zilber, A. Durif, M.T. Averbuch-Pouchot, J. Acta Cryst 36, 2743 (1980)

    Article  Google Scholar 

  14. 14.

    R. Zilber, A. Durif, M.T. Averbuch-Pouchot, Acta Cryst. B 37, 650 (1981)

    Article  Google Scholar 

  15. 15.

    R. Zilber, A. Durif, M.T. Averbuch-Pouchot, Acta Cryst. B 38, 1554 (1982)

    Article  Google Scholar 

  16. 16.

    M. Dammak, H. Khemakhem, T. Mhiri, A.W. Kolsi, A. Daoud, J. Alloys Compd. 280, 107 (1998)

    CAS  Article  Google Scholar 

  17. 17.

    M. Dammak, H. Khemakhem, T. Mhiri, J. Phys. Chem. Solids. 62, 2069 (2001)

    CAS  Article  Google Scholar 

  18. 18.

    M. Abdelhedi, M. Dammak, A. Cousson, M. Nierlich, A.W. Kolsi, Acta Cryst. E 61, 256 (2005)

    Article  CAS  Google Scholar 

  19. 19.

    L. Ktari, M. Dammak, T. Mhiri, A.W. Kolsi, Phys. Procedia. 2, 729 (2009)

    CAS  Article  Google Scholar 

  20. 20.

    F. B. Tahar, A. Elferjani, S. Garcia-Granda, M. Dammak, Inorg. Chem. Commun. 118, 108003 (2020)

  21. 21.

    K. Ghorbel, H. Litaiem, L. Ktari, S. Garcia-Granda, M. Dammak, J. Mol. Struct. 1079, 225 (2015)

    CAS  Article  Google Scholar 

  22. 22.

    H. Frikha, M. Abdelhedi, M. Dammak, S. Garcia-Granda, J. Saudi Chem. Soc. 21, 324 (2017)

    CAS  Article  Google Scholar 

  23. 23.

    H. Frikha, M. Abdelhedi, B. Louati, M. Dammak, S. Garcia-Granda, J. Therm. Anal. Calorim. 131, 2795 (2018)

    CAS  Article  Google Scholar 

  24. 24.

    M.T. Averbuch-Pouchout, A. Durif, J.C. Guitel, Mat. Res. Bull. 14, 1219 (1979)

    Article  Google Scholar 

  25. 25.

    M.T. Averbuch-Pouchot, Acta. Cryst. B36, 2405 (1980)

    CAS  Article  Google Scholar 

  26. 26.

    Nonius, in B.V. Nonius (Ed.), Kappa CCD Sever Software, Delft, The Netherlands (1999)

  27. 27.

    APEX2 version 1. 0–8, Bruker AXS, Madison, WI (2003)

  28. 28.

    D.J. Watkin, C.K. Prout, J.R. Carruthers, P.W. Betteridge, R.I. Cooper, CRYSTALS Issue 11 (Chemical Crystallography Laboratory, Oxford, UK, 2001)

    Google Scholar 

  29. 29.

    G.M. Sheldrick, SHELXS-97 and SHELXL-97, Program for Crystal Structure Refinement (Univ. of Göttingen, Germany, 1970)

    Google Scholar 

  30. 30.

    K. Brandenburg, M. Berndt, DIAMOND Version 2.1.b, Crystal Impact, Gb R, Bonn, Germany (1999)

  31. 31.

    E. Grech, Z. Malarski, W. Sawka-Dobrowolska, L. Sobczyk, J. Mol. Struct. 416, 227 (1997)

    CAS  Article  Google Scholar 

  32. 32.

    L.C. Thomas, R.A. Chittenden, H.E. Hartley, Nature 192, 1283 (1961)

    CAS  Article  Google Scholar 

  33. 33.

    L.C. Thomas, R.A. Chittenden, J. Spectrochim. Acta. 20, 489 (1964)

    CAS  Article  Google Scholar 

  34. 34.

    H.D. Lutz, B. Engelen, Trends. Appl. Spectrosc. 4, 355 (2002)

    CAS  Google Scholar 

  35. 35.

    H.D. Lutz, J. Mol. Struct. 646, 227 (2003)

    CAS  Article  Google Scholar 

  36. 36.

    A. Novak, Hydrogen Bonding in Solids. (Spring-Verlag, Berlin, Heidelberg, New York, 1974) 18:177

  37. 37.

    K. Viswanathan, V.U. Nayar, G. Aruldhas, J. Infrared Phys 26, 353 (1986)

    CAS  Article  Google Scholar 

  38. 38.

    A. Hadrich, A. Lautie, T. Mhiri, F. Romain, Vib Spectrosc. 26, 51 (2001)

    CAS  Article  Google Scholar 

  39. 39.

    H. Naili, T. Mhiri, A. Daoud, Phase Transit. 71, 271 (1999)

    Article  Google Scholar 

  40. 40.

    D. Philip, G. Aruldhas, J. Raman Spectrosc. 20, 637 (1989)

    CAS  Article  Google Scholar 

  41. 41.

    J. Gaumt, Trans. Faraday Sot. 49, 112 (1953)

    Google Scholar 

  42. 42.

    A. Elferjani, M. Abdelhedi, M. Dammak, A, W, Kolsi. J. Appl. Phys. A. 122, 742 (2016)

    Article  CAS  Google Scholar 

  43. 43.

    H. Litaiem, M. Dammak, L. Ktari, S. Kamoun, T. Mhiri, Phase Transit. 77, 929 (2004)

    CAS  Article  Google Scholar 

  44. 44.

    M. Dammak, H. Litaiem, T. Mhiri, J. Alloys Compd. 416, 228 (2006)

    CAS  Article  Google Scholar 

  45. 45.

    M. Dammak, H. Khemakhem, T. Mhiri, A.W. Kolsi, A. Daoud, J. Solid State Chem. 145, 612 (1999)

    CAS  Article  Google Scholar 

  46. 46.

    J. Faby, J. Loub, L. Feltl, J. Therm. Anal. 24, 95 (1982)

    Article  Google Scholar 

  47. 47.

    M. Dammak, H. Khemakhem, N. Zouari, T. Mhiri, A.W. Kolsi, Solid State Ion. 127, 125 (2000)

    CAS  Article  Google Scholar 

  48. 48.

    M. Djemel, M. Abdelhedi, L. Ktari, M. Dammak, J. Mol. Struct. 1033, 84 (2013)

    CAS  Article  Google Scholar 

  49. 49.

    Q.J. Jiao, Y.L. Zhu, H. Huang, H. Ren, J Therm Anal Calorim. 116, 1125 (2014)

    CAS  Article  Google Scholar 

  50. 50.

    R.L. Frost, A. Locke, W.N. Martens, J. Therm. Anal. Cal. 93, 993 (2008)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Higher Education and Research of Tunisia.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Atef Elferjani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elferjani, A., Zaidi, S., Garcia-Granda, S. et al. Synthesis, X-ray diffraction, thermal behavior and physicochemical studies of phase transitions before the decomposition in the new phosphate tellurate protonic conductor compound. Res Chem Intermed (2021). https://doi.org/10.1007/s11164-021-04584-7

Download citation

Keywords

  • Structural study
  • Vibrational study
  • Thermal analysis
  • Phase transitions