Skip to main content
Log in

Formation of alkali metal titanate nanocrystals using titanium alkoxide

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Nanocrystalline powders of alkali metal titanates were prepared using titanium tetraisopropoxide and alkali metal salts by a sol–gel method. The influences of the kinds of alkali metal salts and heating temperature on the reaction of the titanium precursor compounds with the alkali metal salts, its phase transition, and crystal growth were investigated by thermal analyses, XRD measurement, and SEM observation in order to prepare lithium, sodium, and potassium titanates at relatively low temperatures. The amorphous titania gel or its product, very small titania crystals, as an intermediate phase reacted with the alkali metal salts at around 500–600 °C while it was still highly active and formed alkali metal titanate nanoparticles before forming the stable titania crystals. It is important that the active amorphous titania gels react with the dispersed alkali metal salts at a temperature as low as possible in order to form the alkali metal titanate nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

source and using a sodium chloride or b a mixture of sodium chloride and sodium nitrate as the flux at the Na/Ti ratio of 5/6

Fig. 7
Fig. 8

source and using a sodium chloride or b a mixture of sodium chloride and sodium nitrate as the flux at the Na/Ti ratio of 5/6

Fig. 9

source and using potassium chloride as the flux at the K/Ti ratio of 5/1

Fig. 10

source and using potassium chloride at the K/Ti ratio of 100/1. K2Ti8O17 (ICDD PDF 41–1100), K2Ti4O9 (ICDD PDF 32–0861)

Fig. 11

source and using potassium chloride at the K/Ti ratio of 100/1

Similar content being viewed by others

References

  1. P. Afanasiev, J. Mater. Sci. 41, 1187 (2006)

    Article  CAS  Google Scholar 

  2. P. Ponce-Peña, M. Poisot, A. Rodríguez-Pulido, M.A. González-Lozano, Mater. 12, 4132 (2019)

    Article  Google Scholar 

  3. S. Chauque, F.Y. Oliva, G. Lener, O.R. Cámara, J. Solid State Electrochem. 24, 1017 (2020)

    Article  CAS  Google Scholar 

  4. S. Moghiminia, H. Farsi, H. Raissi, Electrochim. Acta 132, 512 (2014)

    Article  CAS  Google Scholar 

  5. N. Eskandari, G. Nabiyouni, S. Masoumi, D. Ghanbari, Composites B 176, 107343 (2019)

  6. X. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)

    Article  CAS  PubMed  Google Scholar 

  7. P. Hartmann, D.K. Lee, B.M. Smarsly, J. Janek, ACS Nano 4, 3147 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. S. Mukherjee, C.D. Quilty, S. Yao, C.A. Stackhouse, L. Wang, K.J. Takeuchi, E.S. Takeuchi, F. Wang, A.C. Marschilok, E. Pomerantseva, J. Mater. Chem. A 8, 18220 (2020)

    Article  Google Scholar 

  9. J. Mosa, M. Aparicio, K. Tadanaga, A. Hayashi, M. Tatsumisago, Electrochim. Acta 149, 293 (2014)

    Article  CAS  Google Scholar 

  10. J. Mosa, M. Aparicio, Nanomater. 10, 1369 (2020)

    Article  CAS  Google Scholar 

  11. T.K. Saothayanun, T.T. Sirinakorn, M. Ogawa, Inorg. Chem. 59, 4024 (2020)

    Article  CAS  PubMed  Google Scholar 

  12. C.Y. Kang, M. Krajewski, J.Y. Lin, J. Solid State Electrochem. 25, 575 (2021)

    Article  CAS  Google Scholar 

  13. G. Tan, X. Hu, S. Wang, X. Yang, Y. Li, Z. Yang, Y. Zhang, Ceram. Int. 46, 27686 (2020)

    Article  CAS  Google Scholar 

  14. D. Wang, X. Wu, Y. Zhang, J. Wang, P. Yan, C. Zhang, D. He, Ceram. Int. 40, 3799 (2014)

    Article  CAS  Google Scholar 

  15. K. Teshima, H. Inagaki, S. Tanaka, K. Yubuta, M. Hozumi, K. Kohama, T. Shishido, S. Oishi, Cryst. Growth Des. 11, 4401 (2011)

    Article  CAS  Google Scholar 

  16. Y. Chiba, D. Koizumi, M. Saito, T. Motohashi, CrystEngComm 21, 3223 (2019)

    Article  CAS  Google Scholar 

  17. A.-L. Sauvet, S. Baliteau, C. Lopez, P. Fabry, J. Solid State Chem. 177, 4508 (2004)

    Article  CAS  Google Scholar 

  18. J. Ramírez-Salgado, E. Djurado, P. Fabry, J. Eur. Ceram. Soc. 24, 2477 (2004)

    Article  Google Scholar 

  19. S.O. Kang, H.S. Jang, Y.I. Kim, K.B. Kim, M.J. Jung, Mater. Lett. 61, 473 (2007)

    Article  CAS  Google Scholar 

  20. L.F. Garay-Rodríguez, L.M. Torres-Martínez, J. Sol-Gel Sci. Technol. 93, 428 (2020)

    Article  Google Scholar 

  21. J. J. Machorro López, A. L. Lázaro, F. J. Rodriguez-Valadez, F. Espejel-Ayala, Environ. Prog. Sustain. Ener. 40, e13475 (2021)

  22. H. Nishikiori, Y. Fukasawa, Y. Yokosuka, T. Fujii, Res. Chem. Intermed. 37, 869 (2011)

    Article  CAS  Google Scholar 

  23. J. Pagáčová, A. Plško, I. Papučová, K. Faturíková, A. Prnová, J. Valuchová, D. Ondrušová, J. Therm. Anal. Calorim. 142, 1643 (2020)

    Article  Google Scholar 

  24. F.D. Hardcastle, H. Ishihara, R. Sharma, A.S. Biris, J. Mater. Chem. 21, 633 (2011)

    Article  Google Scholar 

  25. R.D. Shannon, J.A. Pask, J. Am. Ceram. Soc. 48, 391 (1965)

    Article  CAS  Google Scholar 

  26. H. Nishikiori, M. Takei, K. Oki, S. Takano, N. Tanaka, T. Fujii, Appl. Catal. B: Environ. 127, 227 (2012)

    Article  CAS  Google Scholar 

  27. H. Nishikiori, T. Akaozeki, T. Hizumi, N. Zettsu, K. Teshima, Chem. Lett. 45, 729 (2016)

    Article  CAS  Google Scholar 

  28. H. Nishikiori, T. Hizumi, K. Kawamoto, K. Teshima, Res. Chem. Intermed. 44, 7539 (2018)

    Article  CAS  Google Scholar 

  29. U. Diebold, Surf. Sci. Rep. 48, 53 (2003)

    Article  CAS  Google Scholar 

  30. F. Xiao, G.Q. Jiang, J.Y. Chen, Z.L. Jiang, X.Z. Liu, A. Osaka, X.C. Ma, J. Mater. Sci. 53, 285 (2018)

    Article  CAS  Google Scholar 

  31. J.W. Kim, H.G. Lee, Metall. Mater. Trans. B 32, 17 (2001)

    Article  Google Scholar 

  32. S. Yuvaraj, L. Fan-Yuan, C. Tsong-Huei, Y. Chuin-Tih, J. Phys. Chem. B 107, 1044 (2003)

    Article  CAS  Google Scholar 

  33. M.J. Geselbracht, L.D. Noailles, L.T. Ngo, J.H. Pikul, Chem. Mater. 16, 1153 (2004)

    Article  CAS  Google Scholar 

  34. P. Billik, M. Čaplovičová, Ľ Čaplovič, Mater. Res. Bull. 45, 621 (2010)

    Article  CAS  Google Scholar 

  35. H. Yoshida, M. Sato, N. Fukuo, L. Zhang, T. Yoshida, Y. Yamamoto, T. Morikawa, T. Kajino, M. Sakano, T. Sekito, S. Matsumoto, H. Hirata, Catal. Today 303, 296 (2018)

    Article  CAS  Google Scholar 

  36. Y. Dessureault, J. Sangster, A.D. Pelton, J. Chem. Ref. Data 19, 1149 (1990)

    Article  CAS  Google Scholar 

  37. E. Baché, C. Le Bot, S. Fereres, E. Palomo, Energy Procedia 49, 715 (2014)

    Article  Google Scholar 

  38. P.J.P. Naeyaert, M. Avdeev, N. Sharma, H.B. Yahia, C.D. Lin, Chem. Mater. 26, 7067 (2014)

    Article  CAS  Google Scholar 

  39. S. Altin, S. Demirel, E. Oz, E. Altin, C. Hetherington, A. Bayri, S. Avci, CrystEngComm 22, 2483 (2020)

    Article  CAS  Google Scholar 

  40. D. Sergeev, E. Yazhenskikh, D. Kobertz, M. Müller, Calphad 65, 42 (2019)

    Article  CAS  Google Scholar 

  41. N. Bao, Z. Feng, L. Shen, X. Lu, Cryst. Growth Des. 2, 437 (2002)

    Article  CAS  Google Scholar 

  42. J. Cao, A. Wang, H. Yin, L. Shen, M. Ren, S. Han, Y. Shen, L. Yu, T. Jiang, Ind. Eng. Chem. Res. 49, 9128 (2010)

    Article  CAS  Google Scholar 

  43. M.A. Siddiqui, V.S. Chandela, A. Azam, Appl. Surf. Sci. 258, 7354 (2012)

    Article  CAS  Google Scholar 

  44. H. Yoshida, M. Takeuchi, M. Sato, L. Zhang, T. Teshima, M.G. Chaskar, Catal. Today 232, 158 (2014)

    Article  CAS  Google Scholar 

  45. S. Suzuki, K. Teshima, M. Kiyohara, H. Kamikawa, K. Yubuta, T. Shishido, S. Oishi, CrystEngComm 14, 4176 (2012)

    Article  CAS  Google Scholar 

  46. D.V. Marinin, G.N. Brown, Waste Manage. 20, 54 (2000)

    Article  Google Scholar 

  47. M.N. Akieh, M. Lahtinen, A. Väisänen, M. Sillanpää, J. Hazardous Mater. 152, 640 (2008)

    Article  CAS  Google Scholar 

  48. J. Ryu, S. Kim, H.J. Hong, J. Hong, M. Kim, T. Ryu, I.S. Park, K.S. Chung, J.S. Jang, B.G. Kim, Chem. Eng. J. 304, 503 (2016)

    Article  CAS  Google Scholar 

  49. Z. Chen, Y. Wu, Y. Wei, H. Mimura, J. Radioanal, Nucl. Chem. 307, 931 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers 15K05472 and JP16KK0110.

Funding

Hiromasa Nishikiori was supported by JSPS KAKENHI Grant Numbers 15K05472 and JP16KK0110.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, and writing were performed by Hiromasa Nishikiori. Methodological design was also performed by Fumitaka Hayashi. Material preparation, data collection, and analysis were performed by Hiroyoshi Ebara, Hitoshi Takayama, Shinnosuke Adachi, and Naoya Kobayashi. This study was supervised by Katsuya Teshima.

Corresponding author

Correspondence to Hiromasa Nishikiori.

Ethics declarations

Conflicts of interest

The author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishikiori, H., Ebara, H., Takayama, H. et al. Formation of alkali metal titanate nanocrystals using titanium alkoxide. Res Chem Intermed 47, 5135–5153 (2021). https://doi.org/10.1007/s11164-021-04581-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-021-04581-w

Keywords

Navigation