Skip to main content

Synthesis of multiple-template zeolites with various compositions and investigation of their catalytic properties

Abstract

Hierarchical zeolite catalysts with a combination of microporous and mesoporous properties have a significant effect on improving catalytic processes. We herein report the synthesis of hierarchical ZSM-5 catalysts using the hydrothermal method with various combinations of multiple templates, including TPABr, CTAB, and F127. By applying response surface methodology for design and optimization of template composition in methanol-to-propylene process, we obtained a quadratic model with statistically significant accuracy. Using this model, we could also predict the propylene selectivity of the synthesized zeolites by altering the template composition. Further characterization of the synthesized zeolites by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, NH3-TPD, and N2 physisorption analysis confirmed that the template composition is a critical parameter with huge effect on crystal structure and morphology, strong and weak acid sites, surface area, and volume of mesopores. Different compositions affected orientation of zeolite crystals and diffraction peaks in the XRD patterns. The simultaneous presence of both mesoporogens in the catalyst structure was necessary to achieve the highest efficiency. Comparing experimental data and modeling results, we found that the combination of templates near the central point had a better performance in MTP process. The highest selectivity to propylene (58.8) was obtained from the optimal catalyst and the highest stability was acquired from the catalyst with central point composition. Improved catalytic performance can be attributed to the hierarchical structure, high mesopore volume, and appropriate acidity.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    S.B. Hong, Y.S. Uh, S.I. Woo, J.K. Lee, Korean J. Chem. Eng. 8, 1 (1991).

    CAS  Article  Google Scholar 

  2. 2.

    N. Kalantari, M.J. Vaezi, M. Yadollahi, A.A. Babaluo, B. Bayati, A. Kazemzadeh, Asia Pac. J. Chem. Eng. 10, 45 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    S. Hodoshima, A. Motomiya, S. Wakamatsu, R. Kanai, F. Yagi, Res. Chem. Intermediat. 41, 9615 (2015)

    CAS  Google Scholar 

  4. 4.

    H. Wang, Z. Ma, J. Yang, Catal. Lett. 150, 1454 (2020)

    CAS  Google Scholar 

  5. 5.

    P. Nie, X. Liu, P. Zhang, X. Yuan, X. Li, S. Lin, Z. Yin, Z. Wang, J. Mater. Sci. 56, 8461 (2021)

    CAS  Google Scholar 

  6. 6.

    S. Han, E.A. Kaufman, D.J. Martenak, R.E. Palermo, J.A. Pearson, D.E. Walsh, Catal. Lett. 29, 27 (1994)

    CAS  Google Scholar 

  7. 7.

    X. Liu, S. Gao, F. Yang, S. Zhou, Y. Kong, Res. Chem. Intermediat. 46, 2817 (2020)

    CAS  Google Scholar 

  8. 8.

    G. Wang, Y. Duan, X. Yan, Res. Chem. Intermediat. 39, 2795 (2013)

    CAS  Google Scholar 

  9. 9.

    M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Nature 461, 246 (2009)

    CAS  PubMed  Google Scholar 

  10. 10.

    M. Choi, H.S. Cho, R. Srivastava, C. Venkatesan, D.H. Choi, R. Ryoo, Nat Mater 5, 718 (2006)

    CAS  PubMed  Google Scholar 

  11. 11.

    C. Jia, L. Zong, Y. Wen, H. Xu, H. Wei, X. Wang, Res Chem. Intermediat. 45, 3913 (2019)

    CAS  Google Scholar 

  12. 12.

    C. Zhang, S. Li, S. Bao, Res. Chem. Intermediat. 44, 3581 (2018)

    CAS  Google Scholar 

  13. 13.

    Y. Zhu, Z. Hua, Y. Song, W. Wu, X. Zhou, J. Zhou, J. Shi, J Catal. 299, 20 (2013)

    CAS  Google Scholar 

  14. 14.

    D. Wang, H. Sun, W. Liu, Z. Shen, W. Yang, Front. Chem. Sci. Eng. 14, 248 (2020)

    CAS  Google Scholar 

  15. 15.

    H. Sun, P. Peng, Y. Wang, C. Li, F. Subhan, P. Bai, W. Xing, Z. Zhang, Z. Liu, Z. Yan, J. Porous Mater. 24, 1513 (2017)

    CAS  Google Scholar 

  16. 16.

    R. Feng, X. Yan, X. Hu, Z. Yan, J. Lin, Z. Li, K. Hou, M.J. Rood, Catal. Commun. 109, 1 (2018)

    CAS  Google Scholar 

  17. 17.

    C. Sun, J. Du, J. Liu, Y. Yang, N. Ren, W. Shen, H. Xu, and Y. Tang, Chem. Commun (Camb). 46, 2671 (2010)

  18. 18.

    S. Han, Z. Wang, L. Meng, N. Jiang, Mater. Chem. Phys. 177, 112 (2016)

    CAS  Google Scholar 

  19. 19.

    J. Kim, M. Choi, R. Ryoo, J Catal. 269, 219 (2010)

    CAS  Google Scholar 

  20. 20.

    M. Bjorgen, S. Svelle, F. Joensen, J. Nerlov, S. Kolboe, F. Bonino, L. Palumbo, S. Bordiga, U. Olsbye, J Catal. 249, 195 (2007)

    CAS  Google Scholar 

  21. 21.

    S. Svelle, F. Joensen, J. Nerlov, U. Olsbye, K.P. Lillerud, S. Kolboe, M. Bjorgen, J Am. Chem. Soc. 128, 14770 (2006)

    CAS  PubMed  Google Scholar 

  22. 22.

    J. Ding, P. Chen, S. Fan, Z. Zhang, L. Han, G. Zhao, Y. Liu, Y. Lu, ACS Sustain. Chem. Eng. 5, 1840 (2017)

    CAS  Google Scholar 

  23. 23.

    Q. Wang, S. Xu, J. Chen, Y. Wei, J. Li, D. Fan, Z. Yu, Y. Qi, Y. He, S. Xu, C. Yuan, Y. Zhou, J. Wang, M. Zhang, B. Su, Z. Liu, RSC Adv. 4, 21479 (2014)

    CAS  Google Scholar 

  24. 24.

    S. Han, R. Huang, S. Chen, Z. Wang, N. Jiang, S.-E. Park, Res. Chem. Intermediat. 47, 249 (2021)

    CAS  Google Scholar 

  25. 25.

    R. Sabarish, G. Unnikrishnan, J. Porous Mater. 27, 691 (2020)

    CAS  Google Scholar 

  26. 26.

    L. Zhang, X. Sun, M. Pan, X. Yang, Y. Liu, J. Sun, Q. Wang, J. Zheng, Y. Wang, J. Ma, W. Li, R. Li, J. Mater. Sci. 55, 10412 (2020)

    CAS  Google Scholar 

  27. 27.

    Y. Zhu, Z. Hua, J. Zhou, L. Wang, J. Zhao, Y. Gong, W. Wu, M. Ruan, J. Shi, Chemistry 17, 14618 (2011)

    CAS  PubMed  Google Scholar 

  28. 28.

    H. Wang, T.J. Pinnavaia, Angew. Chem. Int Ed Engl. 45, 7603 (2006)

    CAS  PubMed  Google Scholar 

  29. 29.

    H. Chen, M. Yang, W. Shang, Y. Tong, B. Liu, X. Han, J. Zhang, Q. Hao, M. Sun, X. Ma, Ind. Eng. Chem. Res. 57, 10956 (2018)

    CAS  Google Scholar 

  30. 30.

    X. Zhou, H. Chen, Y. Zhu, Y. Song, Y. Chen, Y. Wang, Y. Gong, G. Zhang, Z. Shu, X. Cui, J. Zhao, J. Shi, Chemistry 19, 10017 (2013)

    CAS  PubMed  Google Scholar 

  31. 31.

    J. Zhou, Z. Hua, Z. Liu, W. Wu, Y. Zhu, J. Shi, ACS Catal. 1, 287 (2011)

    CAS  Google Scholar 

  32. 32.

    N. Hadi, R. Alizadeh, A. Niaei, J. Ind, Eng. Chem. 54, 82 (2017)

    CAS  Google Scholar 

  33. 33.

    H. Soleimanzadeh, A. Niaei, D. Salari, A. Tarjomannejad, S. Penner, M. Grunbacher, S.A. Hosseini, S.M. Mousavi, J. Environ. Manag. 238, 360 (2019)

    CAS  Google Scholar 

  34. 34.

    X. Yuan, J. Liu, G. Zeng, J. Shi, J. Tong, G. Huang, Renew. Energy 33, 1678 (2008)

    CAS  Google Scholar 

  35. 35.

    D.C. Cox, P. Baybutt, Risk Anal. 1, 251 (1981)

    Google Scholar 

  36. 36.

    S. Madadi, L. Charbonneau, J.-Y. Bergeron, S. Kaliaguine, Appl. Catal. B Environ. 260, 118049 (2020)

    CAS  Google Scholar 

  37. 37.

    N. Jiang, Y. Zhao, C. Qiu, K. Shang, N. Lu, J. Li, Y. Wu, Y. Zhang, Appl. Catal. B Environ. 259, 118061 (2019)

    CAS  Google Scholar 

  38. 38.

    P.N. Panahi, D. Salari, A. Niaei, S.M. Mousavi, J. Ind, Eng. Chem. 19, 1793 (2013)

    CAS  Google Scholar 

  39. 39.

    F.U. Nigiz, Res. Chem. Intermed. 45, 3739 (2019)

    CAS  Google Scholar 

  40. 40.

    K. Mehta, M.K. Jha, N. Divya, Res. Chem. Intermediat. 44, 7691 (2018)

    CAS  Google Scholar 

  41. 41.

    S.M. Mousavi, D. Salari, A. Niaei, P.N. Panahi, S. Shafiei, Environ. Technol. 35, 581 (2014)

    CAS  PubMed  Google Scholar 

  42. 42.

    A.K. Abdessalem, N. Oturan, N. Bellakhal, M. Dachraoui, M.A. Oturan, Appl. Catal. B Environ. 78, 334 (2008)

    CAS  Google Scholar 

  43. 43.

    Y. Kim, J.-C. Kim, C. Jo, T.-W. Kim, C.-U. Kim, S.-Y. Jeong, H.-J. Chae, Microporous Mesoporous Mater. 222, 1 (2016)

    CAS  Google Scholar 

  44. 44.

    C. Mei, P. Wen, Z. Liu, H. Liu, Y. Wang, W. Yang, Z. Xie, W. Hua, Z. Gao, J Catal. 258, 243 (2008)

    CAS  Google Scholar 

  45. 45.

    Z. Qin, L. Lakiss, L. Tosheva, J.-P. Gilson, A. Vicente, C. Fernandez, V. Valtchev, Adv. Funct. Mater. 24, 257 (2014)

    CAS  Google Scholar 

  46. 46.

    M. Ghavipour, R.M. Behbahani, G.R. Moradi, A. Soleimanimehr, Fuel 113, 310 (2013)

    CAS  Google Scholar 

  47. 47.

    K. De Wispelaere, C.S. Wondergem, B. Ensing, K. Hemelsoet, E.J. Meijer, B.M. Weckhuysen, V. Van Speybroeck, J. Ruiz-Martı́nez, ACS Catal. 6, 1991 (2016)

  48. 48.

    A.J. Marchi, G.F. Froment, Appl. Catal. 71, 139 (1991)

    CAS  Google Scholar 

  49. 49.

    M.M. Treacy, J.B. Higgins, Collection of simulated XRD powder patterns for zeolites, 5th edn (Elsevier, 2007)

  50. 50.

    Y. Waseda, E. Matsubara, K. Shinoda, X-Ray Diffraction Crystallography, (Springer Science & Business Media, 2011)

  51. 51.

    H. Zhang, Y. Zhao, H. Zhang, P. Wang, Z. Shi, J. Mao, Y. Zhang, Y. Tang, Chemistry 22, 7141 (2016)

    CAS  PubMed  Google Scholar 

  52. 52.

    A. W. Burton, in Zeolite Chemistry and Catalysis, (Springer, 2009), pp. 1–64

  53. 53.

    V. Nikolakis, E. Kokkoli, M. Tirrell, M. Tsapatsis, D.G. Vlachos, Chem. Mater. 12, 845 (2000)

    CAS  Google Scholar 

  54. 54.

    C.E.A. Kirschhock, V. Buschmann, S. Kremer, R. Ravishankar, C.J.Y. Houssin, B.L. Mojet, R.A. van Santen, P.J. Grobet, P.A. Jacobs, J.A. Martens, Angew. Chem. Int. Edit. 40, 2637 (2001)

    CAS  Google Scholar 

  55. 55.

    T.M. Davis, T.O. Drews, H. Ramanan, C. He, J. Dong, H. Schnablegger, M.A. Katsoulakis, E. Kokkoli, A.V. McCormick, R.L. Penn, M. Tsapatsis, Nat. Mater. 5, 400 (2006)

    CAS  PubMed  Google Scholar 

  56. 56.

    S. Qiu, J. Yu, G. Zhu, O. Terasaki, Y. Nozue, W. Pang, R. Xu, Microporous Mesoporous Mater. 21, 245 (1998)

    CAS  Google Scholar 

  57. 57.

    E. de Vos Burchart, J.C. Jansen, B. van de Graaf, H. van Bekkum, Zeolites 13, 216 (1993)

  58. 58.

    G. Bonilla, I. Díaz, M. Tsapatsis, H.-K. Jeong, Y. Lee, D.G. Vlachos, Chem Mater. 16, 5697 (2004)

    CAS  Google Scholar 

  59. 59.

    H. Chen, Y. Wang, C. Sun, X. Wang, C. Wang, Catal. Commun. 112, 10 (2018)

    CAS  Google Scholar 

  60. 60.

    F. Liu, T. Willhammar, L. Wang, L. Zhu, Q. Sun, X. Meng, W. Carrillo-Cabrera, X. Zou, F.-S. Xiao, J. Am, Chem. Soc. 134, 4557 (2012)

    CAS  Google Scholar 

  61. 61.

    D.B. Shukla, V.P. Pandya, J. Chem, Technol. Biot. 44, 147 (2007)

    Google Scholar 

  62. 62.

    J.C. Jansen, F.J. van der Gaag, H. van Bekkum, Zeolites 4, 369 (1984)

    CAS  Google Scholar 

  63. 63.

    C.E.A. Kirschhock, R. Ravishankar, L.V. Looveren, P.A. Jacobs, J.A. Martens, J. Phys. Chem. B 103, 4972 (1999)

    CAS  Google Scholar 

  64. 64.

    W. Wu, E. Weitz, Appl. Surf. Sci. 316, 405 (2014)

    CAS  Google Scholar 

  65. 65.

    Y. Kolyagin, V. Ordomsky, Y. Khimyak, A. Rebrov, F. Fajula, I. Ivanova, J Catal. 238, 122 (2006)

    CAS  Google Scholar 

  66. 66.

    G. Busca, Chem. rev. 107, 5366 (2007)

    CAS  PubMed  Google Scholar 

  67. 67.

    M. Niwa, N. Katada, Catal. Surv. Asia 1, 215 (1997)

    CAS  Google Scholar 

  68. 68.

    N. Khandan, M. Kazemeini, M. Aghaziarati, Appl. Catal. A Gen. 349, 6 (2008)

    CAS  Google Scholar 

  69. 69.

    F. Lónyi, J. Valyon, Micropor. Mesopor. Mat. 47, 293 (2001)

    Google Scholar 

  70. 70.

    H. Dong, L. Zhang, Z. Fang, W. Fu, T. Tang, Y. Feng, T. Tang, RSC Adv. 7, 22008 (2017)

    CAS  Google Scholar 

  71. 71.

    H. Chen, W. Shang, C. Yang, B. Liu, C. Dai, J. Zhang, Q. Hao, M. Sun, X. Ma, Ind. Eng. Chem. Res. 58, 1580 (2019)

    CAS  Google Scholar 

  72. 72.

    S. Storck, H. Bretinger, W.F. Maier, Appl. Catal. A Gen. 174, 137 (1998)

    CAS  Google Scholar 

  73. 73.

    J.C. Groen, L.A.A. Peffer, J. Pérez-Ramı́rez, Microporous Mesoporous Mater. 60, 1 (2003)

  74. 74.

    B. Sulikowski, J. Klinowski, Appl. Catal. A Gen. 84, 141 (1992)

    CAS  Google Scholar 

  75. 75.

    M. Kruk, M. Jaroniec, Chem. Mater. 15, 2942 (2003)

    CAS  Google Scholar 

  76. 76.

    S.L. Burkett, M.E. Davis, Chem. Mater. 7, 920 (1995)

    CAS  Google Scholar 

  77. 77.

    R.R. Wakaskar, S.P.R. Bathena, S.B. Tallapaka, V.V. Ambardekar, N. Gautam, R. Thakare, S.M. Simet, S.M. Curran, R.K. Singh, Y. Dong, J.A. Vetro, Pharm. Res. 32, 1028 (2015)

    CAS  PubMed  Google Scholar 

  78. 78.

    Y. Yang, C. Sun, J. Du, Y. Yue, W. Hua, C. Zhang, W. Shen, H. Xu, Catal. Commun. 24, 44 (2012)

    Google Scholar 

  79. 79.

    J. Li, M. Liu, S. Li, X. Guo, C. Song, Ind. Eng. Chem. Res. 58, 1896 (2019)

    CAS  Google Scholar 

  80. 80.

    Y. Jiao, X. Fan, M. Perdjon, Z. Yang, J. Zhang, Appl. Catal. A Gen. 545, 104 (2017)

    CAS  Google Scholar 

  81. 81.

    Z. Wu, K. Zhao, Y. Zhang, T. Pan, S. Ge, Y. Ju, T. Li, T. Dou, Ind. Eng. Chem. Res. 58, 10737 (2019)

    CAS  Google Scholar 

  82. 82.

    Y. Zhai, S. Zhang, Y. Shang, Y. Song, W. Wang, T. Ma, L. Zhang, Y. Gong, J. Xu, F. Deng, Catal. Sci. Technol. 9, 659 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to the University of Tabriz and Sakarya University for their collaborations in the procedure of research and financial support.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ali Farzi or Aligholi Niaei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalantari, N., Farzi, A., Çaylak Delibaş, N. et al. Synthesis of multiple-template zeolites with various compositions and investigation of their catalytic properties. Res Chem Intermed 47, 4957–4984 (2021). https://doi.org/10.1007/s11164-021-04580-x

Download citation

Keywords

  • Multiple-template
  • ZSM-5
  • Hierarchical
  • Statistical method
  • Methanol to propylene