Skip to main content

Spectroscopic characterization and evaluation of tender Theobroma cacao pod extract as ecofriendly inhibitor for mild steel in 1 M HCl

Abstract

Theobroma cacao L. tender pod was extracted with methanol to prepare tender cacao pod extract (TCPE) using Soxhlet extraction and was characterized by Fourier transform infrared spectroscopy, and gas chromatography–mass spectroscopy. The thermal stability of TCPE was studied by thermogravimetric analysis–differential thermal analysis. The study revealed TCPE to possess heteroatoms required for the adsorption and corrosion inhibition. The TCPE was tested for its corrosion mitigating efficiency for mild steel in 1.0 M HCl by weight loss method (303–308 K), electrochemical impedance spectroscopy, and potentiodynamic polarization (303 K) methods. The inhibition efficiency of TCPE was found to increase with increase in % volume of the TCPE and decrease with increase in temperature. Impedance study showed that the values of resistance due to charge transfer (Rct) increased with % volume of TCPE proving the corrosion inhibition on metal surface. Tafel plots showed that TCPE acts as a mixed type inhibitor. Scanning electron microscope images of the mild steel surface confirmed that TCPE acts as inhibitor by adsorption mechanism.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    N. Perez, Electrochemistry and Corrosion Science (Springer, New Delhi, 2010), p. 21

    Google Scholar 

  2. 2.

    Z. Ahamed, Principles of Corrosion Engineering and Corrosion Control (Butterworth-Hineman Publications, Oxford, 2006), p. 352

    Book  Google Scholar 

  3. 3.

    J.R. Dyer, Applications of Absorption Spectroscopy of Organic Compounds (Prentice Hall of India, New Delhi, 1989)

    Google Scholar 

  4. 4.

    G.D. Christian, Analytical Chemistry, 6th edn. (Wiley, Singapore, 2004)

    Google Scholar 

  5. 5.

    F.W. Fifield, D. Kealey, Principles and Practice of Analytical Chemistry, 5th edn. (Blackwell, London, 2000), p. 477

    Google Scholar 

  6. 6.

    K. Engelkemeier, C. Mücke, K.P. Hoyer et al., Adv. Compos. Hybrid Mater. 2, 189 (2019)

    Article  Google Scholar 

  7. 7.

    Y. Ding, C. Du, X. Wang et al., Adv. Compos. Hybrid Mater. 4, 105 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    T. Fan, W. Deng, Y. Gang, Z. Du, Y. Li, ES Mater. Manuf. 12, 53 (2021)

    Article  Google Scholar 

  9. 9.

    D. Yu, Z. Tian, M. Waqas, Z. Jin, A. El Kasmi, D. Tian, P.M. Kouotou, ES Energy Environ. 5, 75 (2019)

    Article  Google Scholar 

  10. 10.

    J. Liu, J. Zhang, J. Tang, L. Pu, Y. Xue, M. Lu, L. Xu, Z. Guo, ES Mater. Manuf 10, 29 (2020)

    Article  Google Scholar 

  11. 11.

    A. Nautiyal, M. Qiao, T. Ren, T.-S. Huang, X. Zhang, J. Cook, M.J. Bozack, R. Farag, Eng. Sci. 4, 70 (2018)

    Article  Google Scholar 

  12. 12.

    Q. Zhu, J. Liu, X. Wang, Y. Huang, Y. Ren, W. Song, C. Mu, X. Liu, F. Wei, C. Liu, ES Mater. Manuf. 9, 48 (2020)

    Article  Google Scholar 

  13. 13.

    A.M. Madhusudhana, K.N.S. Mohana, M.B. Hegde et al., Adv. Compos. Hybrid Mater. 3, 141 (2020)

    Article  Google Scholar 

  14. 14.

    H. Du, X. Ren, D. Pan, Y. An, Y.-H. Wei, X. Liu, L. Hou, B. Liu, M. Liu, Z. Guo, Adv. Compos. Hybrid Mater. 4, 401 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    K. Sumalatha, J. Ishwara Bhat, Iran. J. Energy Environ. 2, 136 (2019)

    Article  Google Scholar 

  16. 16.

    T. Carballo, M.V. Gil, X. Gómez, F. González-Andrés, A. Morán, Biodegradation 19, 815 (2008)

    Article  PubMed  Google Scholar 

  17. 17.

    R. Rodríguez-Solana, J.M. Salgado, J.M. Dominguez, S. Cortes-Dieguez, Ind. Crops Prod. 52, 528 (2014)

    Article  Google Scholar 

  18. 18.

    D. Watkins, M. Nuruddin, M. Hosur, A. Tcherbi-Narteh, S. Jeelani, J. Mater. Res. Technol. 23, 1 (2015)

    Article  Google Scholar 

  19. 19.

    A. Othman, A. Ismail, N.A. Ghani, I. Adenan, Food Chem. 100, 1523 (2007)

    Article  Google Scholar 

  20. 20.

    L.E. Umoru, I.A. Fawehinmi, A.Y. Fasasi, J. Appl. Sci. Res. 2, 200 (2006)

    Google Scholar 

  21. 21.

    C. Hernández-Hernandez, A. Morales-Sillero, A. Bermúdez-Oria, J. Sci. Food Agric. 99, 325 (2019)

    Article  PubMed  Google Scholar 

  22. 22.

    D.-E. Pedroza-Perinan, M.-A. Villalobos-Vasquez, P.-J. Meza-Castellar, I.-C. Paz-Astudillo, CT & F Ciencia Tecnol. Futuro 6, 147 (2016)

    CAS  Article  Google Scholar 

  23. 23.

    Y. Yetri, E. Gunawarman, N. Jamarun, Asian J. Chem. 27, 875 (2015)

    Article  Google Scholar 

  24. 24.

    P. Shwethambika, J. IshwaraBhat, Iran. J. Chem. Chem. Eng. 40, 906 (2021)

    Article  Google Scholar 

  25. 25.

    S. Pernaje, I.J. Bhat, M.R. Maddani, J. Bio. Tribo Corros. 7, 120 (2021)

    Article  Google Scholar 

  26. 26.

    U. Sharma, M. Bala, P. Kumar, G. Rampal, N. Kumar, B. Singh, S. Arora, J. Med. Plants Res. 4, 2488 (2010)

    Article  Google Scholar 

  27. 27.

    E. Meszaros, E. Jakab, G. Varhegyi, J. Anal. Appl. Pyrol. 79, 61 (2007)

    Article  Google Scholar 

  28. 28.

    J. IshwaraBhat, D.P.A. Vijaya, Arch. Appl. Sci. Res. 64, 377 (2011)

    Article  Google Scholar 

  29. 29.

    N. Raghavendra, J.I. Bhat, Res. Chem. Intermed. 42, 6351 (2016)

    CAS  Article  Google Scholar 

  30. 30.

    M.A. Quraishi, F.A. Ansari, J. Am. Oil Chem. Soc. 80, 705 (2003)

    CAS  Article  Google Scholar 

  31. 31.

    R. Lopes-Sesenes, J.G. Gonzalez-Rodruguez, G.F. Dominguez-Patino, A. Marinez-Villafane, J. Electrochem. Sci. Eng. 8, 477 (2012)

    Article  Google Scholar 

  32. 32.

    L. Guomin, Anti-Corros. Methods Mater. 50, 410 (2003)

    Article  Google Scholar 

  33. 33.

    T. Poornima, J. Nayak, A.N. Shetty, Corr. Sci. 53, 3688 (2011)

    Article  Google Scholar 

  34. 34.

    M.A. Amin, S.S. Abd El-Rehim, E.E.F. El-Sherbini, R.S. Bayoumi, Electrochim. Acta 32, 3588 (2007)

    Article  Google Scholar 

  35. 35.

    A. Vesela, A.S. Barros, A. Synytsyaa, I. Delgadillo, J. Copıkova, M.A. Coimbra, Anal. Chim. Acta 601, 77 (2007)

    Article  PubMed  Google Scholar 

  36. 36.

    N.N. Batista, D.P. de Andrade, C.L. Ramos, D.R. Dias, R.F. Schwan, Food Res. Int. 90, 313 (2016)

    Article  PubMed  Google Scholar 

  37. 37.

    F. Priyangini, S.G. Walde, C. Ramalinga, Carbohydr. Polym. 202, 497 (2018)

    Article  PubMed  Google Scholar 

  38. 38.

    Oh. Teresa, J. Korean Phys. Soc. 56, 1150 (2010)

    Article  Google Scholar 

  39. 39.

    K. Hemashree, J. IshwaraBhat, Res. Chem. Intermed. 43, 4369 (2017)

    Article  Google Scholar 

  40. 40.

    E.E. Oguzie, A.I. Onuchukwu, P.C. Okafor, E.E. Ebenso, Pigment. Resin Technol. 35, 63 (2006)

    Article  Google Scholar 

  41. 41.

    U.F. Ekanem, S.A. Umoren, I.I. Udousoro, A.P. Udoh, Corrosion Inhibition of Mild Steel in Acid Media by Red Peanut Skin Extract Furfural Resin (Springer, Berlin, 2010)

    Google Scholar 

  42. 42.

    P. Shwethambika, J. IshwaraBhat, Iran. J. Energy Environ. 10, 190 (2019)

    Article  Google Scholar 

  43. 43.

    A.M. Badiea, K.N. Mohana, Corros. Sci. 51, 2231 (2009)

    CAS  Article  Google Scholar 

  44. 44.

    M.A. Amin, S.S.A. El-Rehim, E.E.F. El-Sherbini, R.S. Bayoumi, Int. J. Electrochem. Sci. 3, 199 (2008)

    CAS  Google Scholar 

  45. 45.

    C. Lai, S. Zhu, Res. Phys. 7, 3434 (2017)

    Article  Google Scholar 

  46. 46.

    A.M. Abdel-Gaber, B.A. Abd-El-Nabey, E. Khamis, D.E. Abd-El-Khalek, Desalination 278, 337 (2011)

    Article  Google Scholar 

  47. 47.

    D.P. Vijaya, J. Alva, J. Kor. Chem. Soc. 55, 835 (2011)

    Article  Google Scholar 

  48. 48.

    M.K. Pavithra, T.V. Venkatesha, M.K. Punith-Kumar, N.S. Anantha, Res. Chem. Intermed. 42, 2409 (2016)

    Article  Google Scholar 

  49. 49.

    R. Kumari, P.D. JagannathNayak, A. Nityananda Shetty, Port. Electrochim. Acta 29, 445 (2011)

    Article  Google Scholar 

  50. 50.

    M. Larif, A. Elmidaoui, A. Zarrouk, H. Zarrok, R. Salghi, B. Hammouti, H. Oudda, F. Bentiss, Res. Chem. Intermed 39, 2663 (2013)

    Article  Google Scholar 

  51. 51.

    G. Kardas, J. Mater. Sci. 41, 337 (2005)

    Article  Google Scholar 

  52. 52.

    G. Karthik, M. Sundaravadivelu, P. Rajkumar, Res. Chem. Intermed. 41, 1543 (2015)

    Article  Google Scholar 

  53. 53.

    P.R. Ammal, A. Joseph, Egypt. J. Pet. 27, 823 (2018)

    Article  Google Scholar 

  54. 54.

    M. Farsak, H. Kelesand, M. Keles, Corros. Sci. 98, 223 (2015)

    Article  Google Scholar 

  55. 55.

    H. Ashassi-Sorkhabi, D. Seifzadeh, M.G. Hosseini, Corros. Sci. 50, 3363 (2008)

    Article  Google Scholar 

  56. 56.

    M. Mahdavian, S. Ashhari, Electrochim. Acta 55, 1720 (2010)

    Article  Google Scholar 

  57. 57.

    X. Peitao, L. Yuan, F. Mei, N. Mang, Wu. Liu Chunzhao, S.K. Nannan, P. Rahul, P. Duo, G. Zhanhu, F. Runhua, Adv. Compos. Hybrid Mater. 4, 173 (2021)

    Article  Google Scholar 

  58. 58.

    J.P. Sawant, S.F. Shaikh, R.B. Kale, H.M. Pathan, Eng. Sci. 12, 1 (2020)

    Article  Google Scholar 

  59. 59.

    N. Wu, W. Du, Q. Hu, S. Vupputuri, Q. Jiang, Eng. Sci. 13, 11 (2021)

    Article  Google Scholar 

  60. 60.

    E.E. Ebenso, N.O. Eddy, A.O. Odiongenyi, Port. Electrochim. Acta 27, 13 (2009)

    CAS  Article  Google Scholar 

  61. 61.

    A.S. Fouda, A.A. Al-Sarawy, F.S. Ahmed et al., Prot. Met. Phys. Chem. Surf. 45, 635 (2009)

    Article  Google Scholar 

  62. 62.

    B.P. Markhali, R. Naderi, M. Mahdavian, M. Sayebani, S.Y. Arman, Corros. Sci. 75, 269 (2013)

    Article  Google Scholar 

  63. 63.

    F. Mansfeld, Mater. Corros. 54, 489 (2003)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors of this paper profusely extend their gratitude towards, Dr. Nithyananda Shetty A, Professor, Dept of Chemistry, NITK, Surathkal for his help and support. Authors are grateful to DST-PURSE, Mangalore University and SAIF, Punjab University for their timely help in providing GC–MS, SEM results. Authors’ thankfulness is due to Prof. Latha Mohan Shetty, Assistant Professor, Department of Humanities, Vivekananda College of Engineering and Technology, Puttur for providing suggestions as language expert.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mahagundappa R. Maddani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pernaje, S., Bhat, I.J. & Maddani, M.R. Spectroscopic characterization and evaluation of tender Theobroma cacao pod extract as ecofriendly inhibitor for mild steel in 1 M HCl. Res Chem Intermed (2021). https://doi.org/10.1007/s11164-021-04572-x

Download citation

Keywords

  • Cocoa pod extract
  • EIS
  • FT-IR
  • Mild steel corrosion
  • Weight loss