Skip to main content
Log in

Direct conversion of CO2 to light olefins over FeCo/XK-ϒAL2O3 (X = La, Mn, Zn) catalyst via hydrogenation reaction

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The conversion of CO2 to value-added products such as olefins is one of the suggested strategies in carbon dioxide utilization for tackling climate change. Although hydrogenation of CO and CO2 to olefins has been extensively studied, still further research is required to design more active and selective catalyst for this process. In this study, we implemented a modification strategy by using multi-metallic promoters (K-X, X: La, Mn, Zn) in the Fe-Co/ϒ-Al2O3 network to develop more efficient catalyst formulations for olefin synthesis from CO2 hydrogenation. X-ray diffraction, N2-physisorption, hydrogen temperature-programmed reduction, NH3-temperature-programmed desorption, thermogravimetric analysis and X-ray photoelectron spectroscopy were performed to study the physicochemical properties of the synthesized catalysts. The results indicate that the application of assistant promoters influences the catalyst reducibility and surface structure and also changes the product distribution. The addition of La and Mn improves slightly the electron density of iron species and suppresses H2 adsorption and hence shifted the observed product selectivity toward olefins and suppressed methane formation. Moreover, the presence of Zn facilitates the reduction properties and increases the H2 consumption and therefore, led to higher methane formation of 44.9% in comparison to the catalysts using La and Mn. The inclusion of assistant promoters reduced the conversion of CO2 from 30% (FeCo-K) to 22% and enhanced the olefins selectivity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All results and data are the results of experimental work of authors and presented in paper.

Code availability

Not applicable.

Abbreviations

g:

Gram

RWGS:

Reverse water gas shift

h:

Hour

FT:

Fischer–Tropsch

T:

Temperature

BET:

Brunauer–Emmett–Teller

P:

Pressure

BJH:

Barrett-Joyner-Halenda

GHSV:

Gas hourly space velocity

BE:

Binding energy

WHSV:

Weight hourly space velocity

XPS:

X-ray photoelectron spectroscopy

F:

Total flow rate (mol/s)

NH3-TPD:

NH3-temperature-programmed desorption

In:

Inlet gas stream to the reactor

H2-TPR:

Hydrogen temperature-programmed reduction

Out:

Outlet stream gas stream from the reactor

TCD:

Thermal conductivity detectors

i:

Index for number of carbon atoms

FID:

Flame ionization detector

S:

Selectivity

XRD:

X-ray diffraction

XCO2 :

CO2 conversion

TGA:

Thermogravimetric analysis

References

  1. C. Hepburn, E. Adlen, J. Beddington, E.A. Carter, S. Fuss, N. Mac Dowell, C.K. Williams, Nature 575, 87 (2019)

    Article  CAS  PubMed  Google Scholar 

  2. I. Amghizar, L.A. Vandewalle, K.M. Van Geem, G.B. Marin, Engineering 3, 171 (2017)

    Article  CAS  Google Scholar 

  3. M. Sedighi, J. Towfighi, Fuel 153, 382 (2015)

    Article  CAS  Google Scholar 

  4. M. Ronda-Lloret, Y. Wang, P. Oulego, G. Rothenberg, X. Tu, N.R. Shiju, A.C.S. Sustain, Chem. Eng. 8, 17397 (2020)

    CAS  Google Scholar 

  5. E. Devid, M. Ronda-Lloret, Q. Huang, G. Rothenberg, N.R. Shiju, A. Kleyn, Chinese. J. Chem. Phys. 33, 243 (2020)

    CAS  Google Scholar 

  6. E. Ruiz, P.J. Martinez, A. Morales, G. San Vicente, G. de Diego, J.M. Sánchez, Catal. Today 268, 46 (2016)

    Article  CAS  Google Scholar 

  7. M.M. Zain, M. Mohammadi, N. Kamiuchi, A.R. Mohamed, Korean J. Chem. Eng. 37, 1680 (2020)

    Article  CAS  Google Scholar 

  8. N. Bashiri, S.J. Royaee, M. Sohrabi, Res. Chem. Intermed. 44, 217 (2018)

    Article  CAS  Google Scholar 

  9. C. Liu, L. Munjanja, T.R. Cundari, A.K. Wilson, J. Phys. Chem. A. 114, 6207 (2010)

    Article  CAS  PubMed  Google Scholar 

  10. Z. Ma, M.D. Porosoff, ACS Catal. 9, 2639 (2019)

    Article  CAS  Google Scholar 

  11. R.P. Ye, J. Ding, W. Gong, M.D. Argyle, Q. Zhong, Y. Wang, C.K. Russell, Z. Xu, A.G. Russell, Q. Li, M.Y. Fan, Nat. Commun. 10, 1 (2019)

    Article  Google Scholar 

  12. W. Wang, S. Wang, X. Ma, J. Gong. Chem. Soc. Rev. 40, 3703 (2011)

    Article  CAS  Google Scholar 

  13. G. Centi, S. Perathoner, Catal. Today 148, 191 (2009)

    Article  CAS  Google Scholar 

  14. Y. Zhang, G. Jacobs, D.E. Sparks, M.E. Dry, B.H. Davis, Catal. Today 71, 411 (2002)

    Article  CAS  Google Scholar 

  15. M. Ronda-Lloret, G. Rothenberg, N.R. Shiju, Chem. Sus. Chem. 12, 3896 (2019)

    Article  CAS  Google Scholar 

  16. R. Satthawong, N. Koizumi, C. Song, P. Prasassarakich, J. Co2 Util. 3, 102 (2013)

    Article  Google Scholar 

  17. R. Satthawong, N. Koizumi, C. Song, P. Prasassarakich, Catal. Today 251, 34 (2015)

    Article  CAS  Google Scholar 

  18. T. Numpilai, T. Witoon, N. Chanlek, W. Limphirat, G. Bonura, M. Chareonpanich, J. Limtrakul, Appl. Catal. A 547, 219 (2017)

    Article  CAS  Google Scholar 

  19. Q. Chang, C. Zhang, C. Liu, Y. Wei, A.V. Cheruvathur, A.I. Dugulan, J.W. Niemantsverdriet, X. Liu, Y. He, M. Qing, L. Zheng, Y. Yun, Y. Yang, Y. Li, ACS Catal. 8, 3304 (2018)

    Article  CAS  Google Scholar 

  20. S. Kattel, P. Liu, J.G. Chen, J. Am. Chem. Soc. 139, 9739 (2017)

    Article  CAS  PubMed  Google Scholar 

  21. H.M.T. Galvis, J.H. Bitter, C.B. Khare, M. Ruitenbeek, A.I. Dugulan, K.P. de Jong, Science 335, 835 (2012)

    Article  Google Scholar 

  22. W. Wang, X. Jiang, X. Wang, C. Song, Ind. Eng. Chem. Res. 57, 4535 (2018)

    Article  CAS  Google Scholar 

  23. A. Ramirez, L. Gevers, A. Bavykina, S. Ould-Chikh, J. Gascon, ACS Catal. 8, 571 (2018)

    Article  Google Scholar 

  24. Y. Cheng, J. Lin, K. Xu, H. Wang, X. Yao, Y. Pei, S. Yan, M. Qiao, B. Zong, ACS Catal. 6, 389 (2016)

    Article  CAS  Google Scholar 

  25. J. Zhang, X. Su, X. Wang, Q. Ma, S. Fan, T.S. Zhao, React. Kinet. Mech. Cat. 124, 575 (2018)

    Article  CAS  Google Scholar 

  26. X. Wang, J. Zhang, J. Chen, Q. Ma, S. Fan, T.S. Zhao, Chin. J. Chem. Eng. 26, 761 (2018)

    Article  CAS  Google Scholar 

  27. C.G. Visconti, M. Martinelli, L. Falbo, L. Fratalocchi, L. Lietti, Catal. Today 277, 161 (2016)

    Article  CAS  Google Scholar 

  28. T. Riedel, H. Schulz, G. Schaub, K.W. Jun, J.S. Hwang, K.W. Lee, Top. Catal. 26, 41 (2003)

    Article  CAS  Google Scholar 

  29. H. Xiong, M.A. Motchelaho, M. Moyo, L.L. Jewell, N.J. Coville, Fuel 150, 687 (2015)

    Article  CAS  Google Scholar 

  30. L. Zhang, H. Wang, C. Yang, X. Li, J. Sun, H. Wang, P. Gao, Y. Sun, Catal. Today 356, 613 (2020)

    Article  CAS  Google Scholar 

  31. L. Zhang, H. Wang, C. Yang, X. Li, J. Sun, H. Wang, P. Gao, Y. Sun, Catal. Today 9, 456 (2020)

    Google Scholar 

  32. Q. Zhang, J. Kang, Y. Wang, ChemCatChem 2, 1030 (2010)

    Article  CAS  Google Scholar 

  33. Z. Tian, C. Wang, Z. Si, L. Ma, L. Chen, Q. Liu, H. Huang, Appl. Catal. A 541, 50 (2017)

    Article  CAS  Google Scholar 

  34. T. Li, H. Wang, Y. Yang, H. Xiang, Y. Li, J. Energy Chem. 22, 624 (2013)

    Article  Google Scholar 

  35. N. Lohitharn, J.G. Goodwin Jr., J. Catal. 257, 142 (2008)

    Article  CAS  Google Scholar 

  36. S.A. Al-Sayari, Ceram. Int. 40, 723 (2014)

    Article  CAS  Google Scholar 

  37. R.W. Dorner, D.R. Hardy, F.W. Williams, H.D. Willauer, Catal. Commun. 11, 816 (2010)

    Article  CAS  Google Scholar 

  38. B. Liang, T. Sun, J. Ma, H. Duan, L. Li, X. Yang, Y. Zhang, X. Su, Y. Huang, T. Zhang, Catal. Sci. Technol. 9, 456 (2019)

    Article  CAS  Google Scholar 

  39. F. Jiao, J. Li, X. Pan, J. Xiao, H. Li, H. Ma, X. Bao, Science 351, 1065 (2016)

    Article  CAS  PubMed  Google Scholar 

  40. W. Donphai, N. Piriyawate, T. Witoon, P. Jantaratana, V. Varabuntoonvit, M. Chareonpanich, J. CO2 Util. 16, 204 (2016)

    Article  CAS  Google Scholar 

  41. P. Zhai, C. Xu, R. Gao, X. Liu, M. Li, W. Li, X. Fu, C. Jia, J. Xie, M. Zhao, X. Wang, Angew. Chem. Int. Ed. 128, 10056 (2016)

    Article  Google Scholar 

  42. X. Gao, J. Zhang, N. Chen, Q. Ma, S. Fan, T. Zhao, N. Tsubaki, Chin. J. Catal. 37, 510 (2016)

    Article  CAS  Google Scholar 

  43. J. Zhang, S. Lu, X. Su, S. Fan, Q. Ma, T. Zhao, J. CO2 Util. 12, 95 (2015)

    Article  Google Scholar 

  44. K.S. Sing, R.T. Williams, Adsorpt. Sci. Technol. 22, 773 (2004)

    Article  CAS  Google Scholar 

  45. E. Barsotti, S.P. Tan, S. Saraji, M. Piri, J.H. Chen, Fuel 184, 344 (2016)

    Article  CAS  Google Scholar 

  46. T. Li, M. Virginie, A.Y. Khodakov, Appl. Catal. A 542, 154 (2017)

    Article  CAS  Google Scholar 

  47. R.W. Dorner, D.R. Hardy, F.W. Williams, H.D. Willauer, Appl. Catal. A 373, 112 (2010)

    Article  CAS  Google Scholar 

  48. J.A. Amelse, G. Grynkewich, J.B. Butt, L.H. Schwartz, J. Phys. Chem. 85, 2484 (1981)

    Article  CAS  Google Scholar 

  49. M. Al-Dossary, A.A. Ismail, J.L.G. Fierro, H. Bouzid, S.A. Al-Sayari, Appl. Catal. B 165, 651 (2015)

    Article  CAS  Google Scholar 

  50. P. Kangvansura, L.M. Chew, W. Saengsui, P. Santawaja, Y. Poo-arporn, M. Muhler, H. Schulz, A. Worayingyong, Catal. Today 275, 59 (2016)

    Article  CAS  Google Scholar 

  51. R. Al-Gaashani, S. Radiman, N. Tabet, A.R. Daud, J. Alloys Compd. 550, 395 (2013)

    Article  CAS  Google Scholar 

  52. D. Patil, V. Patil, P. Patil, Sens. Actuators B Chem. 152, 299 (2011)

    Article  CAS  Google Scholar 

  53. W.G. Zhou, J.Y. Liu, X. Wu, J.F. Chen, Y. Zhang, Catal. Commun. 60, 76 (2015)

    Article  CAS  Google Scholar 

  54. Y. Zhenya, D. Weiping, Q. Zhang, W. Ye, Chin. J. Catal. 5, 956 (2013)

    Google Scholar 

  55. M. Ronda-Lloret, L. Yang, M. Hammerton, V.S. Marakatti, M. Tromp, Z. Sofer, A. Sepúlveda-Escribano, E.V. Ramos-Fernandez, J.J. Delgado, G. Rothenberg, T. Ramirez Reina, ACS Sustain. Chem. Eng. 9, 4957 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. S.S. Nam, H. Kim, G. Kishan, M.J. Choi, K.W. Lee, Appl. Catal. A 179, 155 (1999)

    Article  CAS  Google Scholar 

  57. M. Albrecht, U. Rodemerck, M. Schneider, M. Bröring, D. Baabe, E.V. Kondratenko, Appl. Catal. B 204, 119 (2017)

    Article  CAS  Google Scholar 

  58. T. Witoon, N. Kachaban, W. Donphai, P. Kidkhunthod, K. Faungnawakij, M. Chareonpanich, J. Limtrakul, Energy Convers. Manag. 118, 21 (2016)

    Article  CAS  Google Scholar 

  59. S.C. Lee, J.H. Jang, B.Y. Lee, M.C. Kang, M. Kang, S.J. Choung, Appl. Catal. A 253, 293 (2003)

    Article  CAS  Google Scholar 

  60. B. Rongxian, T. Yisheng, H. Yizhuo, Fuel Process. Technol. 86, 293 (2004)

    Article  Google Scholar 

  61. S.H. Kang, J.W. Bae, K.J. Woo, P.S. Prasad, K.W. Jun, Fuel Process. Technol. 91, 399 (2010)

    Article  CAS  Google Scholar 

  62. J. Wei, Q. Ge, R. Yao, Z. Wen, C. Fang, L. Guo, H. Xu, J. Sun, Nat. Commun. 8, 1 (2017)

    Article  Google Scholar 

  63. A. Álvarez, M. Borges, J.J. Corral-Pérez, J.G. Olcina, L. Hu, D. Cornu, R. Huang, D. Stoian, A. Urakawa, ChemPhysChem 18, 3135 (2017)

    Article  PubMed  Google Scholar 

  64. A. Samanta, M.V. Landau, R. Vidruk-Nehemya, M. Herskowitz, Catal. Sci. Technol. 7, 4048 (2017)

    CAS  Google Scholar 

  65. N. Boreriboon, X. Jiang, C. Song, P. Prasassarakich, Top. Catal. 61, 1551 (2018)

    Article  CAS  Google Scholar 

  66. K. Xu, B. Sun, J. Lin, W. Wen, Y. Pei, S. Yan, M. Qiao, X. Zhang, B. Zong, Nat. Commun. 5, 1 (2014)

    Google Scholar 

  67. R.P. Ye, J. Ding, W. Gong, M.D. Argyle, Q. Zhong, Y. Wang, C.K. Russell, Z. Xu, A.G. Russell, Q. Li, M. Fan, Cat. Nat. Commun. 10, 1 (2019)

    Article  Google Scholar 

  68. S. Saeidi, S. Najari, F. Fazlollahi, M.K. Nikoo, F. Sefidkon, J.J. Klemeš, L.L. Baxter, Renew. Sustain. Energy Rev. 80, 1292 (2017)

    Article  CAS  Google Scholar 

  69. C.M. Kalamaras, P. Panagiotopoulou, D.I. Kondarides, A.M. Efstathiou, J Catal. 264, 117 (2009)

    Article  CAS  Google Scholar 

  70. G.-C. Wang, J. Nakamura, J Phys Chem Lett. 1, 3053 (2010)

    Article  CAS  Google Scholar 

  71. E. Vesselli, L.D. Rogatis, X. Ding, A. Baraldi, L. Savio, L. Vattuone, P. Fornasiero, M. Peressi, A. Baldereschi, R. Rosei, J Am Chem Soc 130, 11417 (2008)

    Article  CAS  PubMed  Google Scholar 

  72. V. Ponec, W.A. van Barneveld, Ind. Eng. Chem. Prod. Res. Dev. 18, 268 (1979)

    Article  CAS  Google Scholar 

  73. P. Biloen, W. Sachtler, Adv Catal. 30, 165 (1981)

    CAS  Google Scholar 

  74. R.C. Brady, R. Pettit, J. Am. Chem. Soc. 102, 6181 (1980)

    Article  CAS  Google Scholar 

  75. J. Ko, B.K. Kim, J.W. Han, J. Phys. Chem. 120, 3438 (2016)

    CAS  Google Scholar 

  76. R.E. Owen, D. Mattia, P. Plucinski, M.D. Jones, ChemPhysChem 18, 3211 (2017)

    Article  CAS  PubMed  Google Scholar 

  77. T. Riedel, G. Schaub, K.W. Jun, K.W. Lee, Ind. Eng. Chem. Res. 40, 1355 (2001)

    Article  CAS  Google Scholar 

  78. M.E. Dry, T. Shingles, L. Boshoff, G. Oosthuizen, J Catal. 15, 190 (1969)

    Article  CAS  Google Scholar 

  79. M.E. Dry, Ind. Eng. Chem. Prod. Res. Dev. 15, 282 (1976)

    CAS  Google Scholar 

  80. Z.T. Liu, Y.W. Li, J.L. Zhou, B.J. Zhang, J. Chem. Soc. 91, 3255 (1995)

    CAS  Google Scholar 

  81. P.S. Prasad, J.W. Bae, K.W. Jun, K.W. Lee, Catal. Surv. Asia 12, 170 (2008)

    Article  CAS  Google Scholar 

  82. H. Wang, X. Nie, X. Guo, C. Song, J. CO2. Util. 15, 107 (2016)

    Article  CAS  Google Scholar 

  83. G. Wang, L. Jiang, Y. Zhou, Z. Cai, Y. Pan, X. Zhao, Y. Li, Y. Sun, B. Zhong, X. Pang, W. Huang, J. Mol. Struct. Theochem. 634, 23 (2003)

    Article  CAS  Google Scholar 

  84. M. Ronda-Lloret, V.S. Marakatti, W.G. Sloof, J.J. Delgado, A. Sepúlveda-Escribano, E.V. Ramos-Fernandez, G. Rothenberg, N.R. Shiju, Chemsuschem 13, 6401 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  85. C.H. Bartholomew, Appl. Catal. A Gen. 212, 17 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Tarbiat Modares University, Chemistry & Chemical Engineering Research Center of Iran, Research Institute of Petroleum Industry, Gas Research Division, Tehran, Iran, and Technical university of Berlin, Germany, that are thankfully acknowledged.

Funding

This research is not funded by any organization or legal entity.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Reza Omidkhah or Hamid Reza Godini.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 804 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashiri, N., Omidkhah, M.R. & Godini, H.R. Direct conversion of CO2 to light olefins over FeCo/XK-ϒAL2O3 (X = La, Mn, Zn) catalyst via hydrogenation reaction. Res Chem Intermed 47, 5267–5289 (2021). https://doi.org/10.1007/s11164-021-04562-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-021-04562-z

Keywords

Navigation