Skip to main content

Advertisement

Log in

In situ generation of nano TiO2 on activated carbon fiber with enhanced photocatalytic degradation performance

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Photocatalytic degradation is an advanced technique towards remediation of wastewater laden with organic contaminants. In the present study, in order to improve the photocatalytic activity and recycling times of TiO2 under visible light, TiO2 was facilely in situ immobilized on activated carbon fiber (ACF) surface by coating and hydrothermal treatment, called ACF-TiO2. XRD indicated that TiO2 on ACF-TiO2 was nano anatase type with a grain size of 3.72 nm. SEM, XPS and FT-IR analysis showed that TiO2 was uniformly dispersed on the surface of ACF, and the C element of ACF entered the lattice of TiO2, forming Ti–O–C bond. According to the analysis of UV-Vis DRS, the response of ACF-TiO2 to light exhibited a significant red shift, and the bandgap energy value decreased to 3.03 eV; In the process of eliminating MB, the presence of ACF improved the photocatalytic performance of TiO2 and the loaded TiO2 continuously degraded the MB molecules adsorbed by ACF. The whole process of adsorption-photocatalytic degradation was dynamically completed, and the synergistic effect between ACF and nano TiO2 was beneficial to the in situ regeneration and sustainable use of ACF-TiO2. This study may provide a facile reference to prepare ACF supported TiO2 without the sacrifice of the pores and adsorption capacity of substrates of ACF, and the desirable performance can be highly applied in the treatment of wastewater contaminated with organic dyes.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Reference

  1. Z. Long, Q. Li, T. Wei, G. Zhang, Z. Ren, J. Hazard. Mater. 395, 122599 (2020)

    Article  CAS  PubMed  Google Scholar 

  2. W. Liu, H. Huang, H. Cheng, Z. Liu, Fiber. Polym. 21, 604 (2020)

    Article  CAS  Google Scholar 

  3. M.F. Canbolat, A.M. Channa, S. Baytak, Fiber. Polym. 21, 2473 (2020)

    Article  CAS  Google Scholar 

  4. K.Z. Elwakeel, A.A. El-Bindary, A.Z. El-Sonbati, A.R. Hawas, Cand. J. Chem. 95, 807 (2017)

    Article  CAS  Google Scholar 

  5. H.A. Kiwaan, T.M. Atwee, E.A. Azab, A.A. El-Bindary, J. Mol. Struct. 1200, 127115 (2020)

    Article  CAS  Google Scholar 

  6. E.E. El-Katori, M.A. Ahmed, A.A. El-Bindary, A.M. Oraby, J. Photochem. Photobiol. A-Chem. 392, 112403 (2020)

    Article  CAS  Google Scholar 

  7. A.A. El-Bindary, S.M. El-Marsafy, A.A. El-Maddah, J. Mol. Struct. 1191, 76 (2019)

    Article  CAS  Google Scholar 

  8. M.T. Noman, M.A. Ashraf, A. Ali, Environ. Sci. Pollut. Res. 26(4), 3262 (2019)

    Article  CAS  Google Scholar 

  9. W. Chang, X.Z. Huang, M.J. Zhang, Y.P. Du, Y.X. Yang, Optoelectron Adv. Mater. Rapid Commun. 13, 487 (2019)

    CAS  Google Scholar 

  10. F. Temerov, L. Ammosova, J. Haapanen, J.M. Makela, M. Suvanto, J.J. Saarinen, Surf. Coat Technol. 381, 125201 (2020)

    Article  CAS  Google Scholar 

  11. F. Galiano, X. Song, T. Marino, M. Boerrigter, O. Saoncella, S. Simone, M. Faccini, C. Chaumette, E. Drioli, A. Figoli, Polymers 10, 1134 (2018)

    Article  PubMed Central  CAS  Google Scholar 

  12. M. Li, B. Lu, Q.-F. Ke, Y.-J. Guo, Y.-P. Guo, J. Hazard Mater. 333, 88 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. N.X. Sang, V.C. Minh, Nanotechnology 31(43), 435703 (2020)

    Article  CAS  PubMed  Google Scholar 

  14. L. Ren, Y. Yu, Y. Yang, Q. Zhang, X. Xiao, R. Liu, W. Xu, J. Mater. Sci. 55, 3167 (2020)

    Article  CAS  Google Scholar 

  15. R.F. Liu, W.B. Li, A.Y. Peng, Appl. Surf. Sci. 427, 608 (2018)

    Article  CAS  Google Scholar 

  16. M.M. Wu, M.Y. Li, J.H. Liu, D.Y. Liu, G.H. Li, L. Mingyang, L. Jiahao, L. Yudan, L. Guohua, J Funct Mater 48, 10001 (2017)

    CAS  Google Scholar 

  17. Y. Li, F. Liu, M. Li, X. Wang, X. Qi, W. Li, M. Xue, Y. Wang, F. Han, Environ. Sci. Pollut. Res. 27, 9866 (2020)

    Article  CAS  Google Scholar 

  18. H.J. Chen, Y.L. Yang, M. Hong, J.G. Chen, G.Q. Suo, X.J. Hou, L. Feng, Z.G. Chen, Sustain. Mater. Technol. 21, e00105 (2019)

    CAS  Google Scholar 

  19. C. Xu, W. Xie, X. Si, J. Zhang, J. Yang, Environ. Res. 166, 167 (2018)

    Article  CAS  PubMed  Google Scholar 

  20. P. Xu, X. Shen, L. Luo, Z. Shi, Z. Liu, Z. Chen, M. Zhu, L. Zhang, Environ. Sci. Nano 5, 327 (2018)

    Article  CAS  Google Scholar 

  21. G. Chen, Y. Wang, G. Dai, F. Zhang, Res. Chem. Intermed. 42, 8227 (2016)

    Article  CAS  Google Scholar 

  22. Y. Wang, G. Chen, Q. Shen, F. Zhang, G. Chen, Mater. Lett. 116, 27 (2014)

    Article  CAS  Google Scholar 

  23. Z. Wang, K. Yoshinaga, X.R. Bu, M. Zhang, J. Hazard. Mater. 290, 134 (2015)

    Article  CAS  PubMed  Google Scholar 

  24. J. Duan, H. Ji, T. Xu, F. Pan, X. Liu, W. Liu, D. Zhao, Chem. Eng. J. 406, 126752 (2021)

    Article  CAS  Google Scholar 

  25. C. Dang, F. Sun, H. Jiang, T. Huang, W. Liu, X. Chen, H. Ji, J. Hazard Mater. 400, 123225 (2020)

    Article  CAS  PubMed  Google Scholar 

  26. M. Li, B. Lu, Q.-F. Ke, Y.-J. Guo, Y.-P. Guo, J Hazard Mater 333, 88 (2017)

    Article  CAS  PubMed  Google Scholar 

  27. S. Yao, J. Li, Z. Shi, Particuology 8, 272 (2010)

    Article  CAS  Google Scholar 

  28. M. Nakhaei, Z. Barzgari, S.S. Mohammadi, A. Ghazizadeh, Res. Chem. Intermed. 45, 4995 (2019)

    Article  CAS  Google Scholar 

  29. Y. Shi, Q. Quo, and Y. Xie, in Applications of Engineering Materials, Pts 1-4, ed. By J. L. Bu, P. C. Wang, L. Ai, X. M. Sang, and Y. G. Li (2011), p. 1735

  30. H. Ji, P. Du, D. Zhao, S. Li, F. Sun, E.C. Duin, W. Liu, Appl. Catal. B 263, 118357 (2020)

    Article  CAS  Google Scholar 

  31. C. Dang, F. Sun, H. Jiang, T. Huang, W. Liu, X. Chen, H. Ji, J. Hazard Mater. 400, 123225 (2020)

    Article  CAS  PubMed  Google Scholar 

  32. C. Vu Duc, A. Broggi, L. Di Palma, M. Scarsella, G. Speranza, G. Vilardi, T. Pham Nam. J. Electron. Mater. 47(4), 2215 (2018)

  33. Z. Xiu, M. Guo, T. Zhao, K. Pan, Z. Xing, Z. Li, W. Zhou, Chem. Eng. J. 382, 123011 (2020)

    Article  CAS  Google Scholar 

  34. P.F. Fu, Y. Luan, X.G. Dai, J. Mol. Catal. A-Chem. 221(1–2), 81 (2004)

    Article  CAS  Google Scholar 

  35. J. Liu, Q. Zhang, J. Yang, H. Ma, M.O. Tade, S. Wang, J. Liu, Chem. Commun. 50, 13971 (2014)

    Article  CAS  Google Scholar 

  36. K.Y. Foo, B.H. Hameed, Adv. Colloid Interface Sci. 159, 130 (2010)

    Article  CAS  PubMed  Google Scholar 

  37. S. Umrao, S. Abraham, F. Theil, S. Pandey, V. Ciobota, P.K. Shukla, C.J. Rupp, S. Chakraborty, R. Ahuja, J. Popp, B. Dietzek, A. Srivastava, RSC Adv. 4, 59890 (2014)

    Article  CAS  Google Scholar 

  38. H. Wu, X.-L. Wu, Z.-M. Wang, H. Aoki, S. Kutsuna, K. Jimura, S. Hayashi, Appl. Catal. B-Environ. 207, 255 (2017)

    Article  CAS  Google Scholar 

  39. Z. Chu, L. Qiu, Y. Chen, Z. Zhuang, P. Du, J. Xiong, J. Phys. Chem. Solids 136, 109138 (2020)

    Article  CAS  Google Scholar 

  40. E.A. Nunes Simonetti, Ld.S. Cividanes, T.M. Bastos Campos, B.R. de Canuto Menezes, F.S. Brito, G.P. Thim, Mater Chem. Phys. 177, 330 (2016)

    Article  CAS  Google Scholar 

  41. H. Slimen, A. Houas, J.P. Nogier, J. Photochem. Photobiol. A-Chem. 221, 13 (2011)

    Article  CAS  Google Scholar 

  42. R. Katal, S. Masudy-Panah, M. Tanhaei, M.H.D.A. Farahani, J. Hu, Chem. Eng. J. 384, 123384 (2020)

    Article  CAS  Google Scholar 

  43. T.-T. Lim, P.-S. Yap, M. Srinivasan, A.G. Fane, Crit. Rev. Environ. Sci. Technol. 41, 1173 (2011)

    Article  CAS  Google Scholar 

  44. L Hoang Anh, L Le Thuy, S Chin, J Jurng.(2012) Powder Technol. 225(1), 167

Download references

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (Nos. 51803128, 52073186, 22075189), Fundamental Research Funds for the Central Universities (No. 20826041D4160), Sichuan Science and Technology Programs (Nos. 19YJ0126, 2020KJT0031-2020ZHCG0051, 2020KJT0061-2020ZHFP0148), Funding of Research of Leather and Footwear Industry of Wenzhou (No. 202008GT01), Support Program of Innovative Talent Team of Sui Ning City (2020-2021), Funding of Engineering Characteristic Team, Sichuan University (2020SCUNG122).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Tan or Yidong Shi.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Yang, Y., Zhao, R. et al. In situ generation of nano TiO2 on activated carbon fiber with enhanced photocatalytic degradation performance. Res Chem Intermed 47, 3769–3784 (2021). https://doi.org/10.1007/s11164-021-04490-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-021-04490-y

Keywords

Navigation