Skip to main content
Log in

Effect of calcination temperature on the structural and formaldehyde removal activity of Mn/Fe2O3 catalysts

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this work, the Mn-doped Fe2O3 catalyst (Mn/Fe2O3) was prepared by hydrothermal and calcination methods to remove formaldehyde. The effect of calcination temperature on the structure and performance of Mn/Fe2O3 catalyst was elucidated by X-ray diffraction, Raman spectroscopy, scanning electron microscope, transmission electron microscopy, energy dispersive spectroscopy, selected area electron diffraction, N2 adsorption–desorption, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The result showed that the Mn/Fe2O3 catalyst calcined at 200 ℃ (MFC200) possessed the best specific surface area (176.04 m2/g, 4.96 times that of pure Fe2O3). The active oxygen content on the catalyst surface varies with the calcination temperature, and that of MFC200 sample is the highest compared with the samples calcined at other calcination temperatures. In addition, the content of Mn4+ species also varies with the calcination temperature, which plays a key role in Mn/Fe2O3 catalysts for HCHO removal. It is concluded that the high specific surface area, the abundant active oxygen species and rich Mn4+ were contributed to the excellent formaldehyde removal performance of MFC200 sample. The Mn/Fe2O3 catalyst will be a promising catalyst to degrade formaldehyde in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. T. Salthammer, Build. Sci. 150, 219 (2019)

    Google Scholar 

  2. G. Xiao, A. Huang, H. Su, T.W. Tan, Build. Sci. 65, 215 (2013)

    Google Scholar 

  3. T.X. Liu, F.B. Li, X.Z. Li, J. Hazard. Mater. 152, 347 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. S. Suresh, T.J. Bandosz, Carbon 137, 207 (2018)

    Article  CAS  Google Scholar 

  5. C.J. Na, M.J. Yoo, D.C.W. Tsang, H.W. Kim, K.H. Kim, J. Hazard. Mater. 366, 452 (2019)

    Article  CAS  PubMed  Google Scholar 

  6. H. Plaisance, P. Mocho, V. Desauziers, Indoor Air 30, 1256 (2020)

    Article  CAS  PubMed  Google Scholar 

  7. X.A. Dong, W. Cui, H. Wang, J.Y. Li, Y.J. Sun, H.Q. Wang, Y.X. Zhang, H.W. Huang, F. Dong, Sci. Bull. 64, 669 (2019)

    Article  CAS  Google Scholar 

  8. W.Y. Diao, H.Y. Cai, L. Wang, X. Rao, Y.P. Zhang, ChemCatChem 12, 5420 (2020)

    Article  CAS  Google Scholar 

  9. S.H. Liu, W.X. Lin, J. Photochem. Photobiol., A 378, 66 (2019)

    Article  CAS  Google Scholar 

  10. P.J. Asilevi, C.W. Yi, J. Li, M.I. Nawaz, H.J. Wang, L. Yin, Z. Junli, Int. J. Environ. Sci. Technol. 17, 765 (2020)

    Article  CAS  Google Scholar 

  11. A.A. Adelodun, J. Ind. Eng. Chem. 92, 41 (2020)

    Article  CAS  Google Scholar 

  12. X. Zhu, X. Gao, R. Qin, Y. Zeng, R. Qu, C. Zheng, X. Tu, Appl. Catal., B 170, 293 (2015)

    Article  CAS  Google Scholar 

  13. X.Q. Yang, X.L. Yu, M.Y. Lin, M.F. Ge, Y. Zhao, F.Y. Wang, J. Mater. Chem. A 5, 13799 (2017)

    Article  CAS  Google Scholar 

  14. X.Y. Chen, M. Chen, G.Z. He, F. Wang, G.Y. Xu, Y.B. Li, C.B. Zhang, H. He, J. Phys. Chem. C 122, 27331 (2018)

    Article  CAS  Google Scholar 

  15. B.Y. Bai, H. Arandiyan, J.H. Li, Appl. Catal., B 142, 677 (2013)

    Article  CAS  Google Scholar 

  16. B. Bai, Q. Qiao, J. Li, J. Hao, Chin. J. Catal. 37, 102 (2016)

    Article  CAS  Google Scholar 

  17. J.Q. Torres, S. Royer, J.P. Bellat, J.M. Giraudon, J.F. Lamonier, Chemsuschem 6, 578 (2013)

    Article  CAS  Google Scholar 

  18. B.B. Chen, X.B. Zhu, Y.D. Wang, L.M. Yu, C. Shi, Chin. J. Catal. 37, 1729 (2016)

    Article  CAS  Google Scholar 

  19. N.H. An, W.L. Zhang, X.L. Yuan, B. Pan, G. Liu, M.J. Jia, W.F. Yan, W.X. Zhang, Chem. Eng. J. 215, 1 (2013)

    Article  CAS  Google Scholar 

  20. L. Yu, R.S. Peng, L.M. Chen, M.L. Fu, J.L. Wu, D.Q. Ye, Chem. Eng. J. 334, 2480 (2018)

    Article  CAS  Google Scholar 

  21. B.T. Qiao, A.Q. Wang, X.F. Yang, L.F. Allard, Z. Jiang, Y.T. Cui, J.Y. Liu, J. Li, T. Zhang, Nat. Chem. 3, 634 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. C.Y. Li, Y.N. Shen, M.L. Jia, S.S. Sheng, M.O. Adebajo, H.Y. Zhu, Catal. Commun. 9, 355 (2008)

    Article  CAS  Google Scholar 

  23. M.H. Chen, H. Yin, X.Y. Li, Y.P. Qiu, G.X. Cao, J.J. Wang, X.F. Yang, P. Wang, J. Hazard. Mater. 395, 122628 (2020)

    Article  CAS  PubMed  Google Scholar 

  24. X.J. Zhang, J.G. Zhao, Z.X. Song, H. Zhao, W. Liu, Z.A. Ma, M. Zhao, B.L. Zhao, React. Kinet., Mech. Catal. 128, 271 (2019)

    Article  CAS  Google Scholar 

  25. Y.N. Liao, M.L. Fu, L.M. Chen, J.L. Wu, B.C. Huang, D.Q. Ye, Catal. Today 216, 220 (2013)

    Article  CAS  Google Scholar 

  26. X. Du, C.T. Li, J. Zhang, L.K. Zhao, S.H. Li, Y. Lyu, Y.D. Zhang, Y.C. Zhu, L. Huang, J. Hazard. Mater. 408, 124830 (2020)

    Article  PubMed  CAS  Google Scholar 

  27. J.X. Zhang, L. Liu, X.N. Tang, D. Sun, C.X. Tian, Y. Yang, Funct. Mater. Lett. 13, 2051038 (2020)

    CAS  Google Scholar 

  28. X.L. Liang, P. Liu, H.P. He, G.L. Wei, T.H. Chen, W. Tan, F.D. Tan, J.X. Zhu, R.L. Zhu, J. Hazard. Mater. 306, 305 (2016)

    Article  CAS  PubMed  Google Scholar 

  29. M. Sidheswaran, S. Cohn, D.P. Sullivan, L.A. Gundel, Lawrence Berkeley National Lab., (2013)

  30. J.L. Xie, M.W. Meng, Z.H. Lin, H. Ding, J.H. Chen, S.Y. Huang, Z.M. Zhou, Res. Chem. Intermed. 46, 1789 (2020)

    Article  CAS  Google Scholar 

  31. C.W. Ahn, Y.W. You, I. Heo, J.S. Hong, J.K. Jeon, Y.D. Ko, Y.H. Kim, H. Park, J.K. Suh, J. Ind. Eng. Chem. 47, 439 (2017)

    Article  CAS  Google Scholar 

  32. M.K. Racik, A. Manikandan, M. Mahendiran, J. Madhavan, M.V.A. Raj, M.G. Mohamed, T. Maiyalagan, Ceram. Int. 46, 6222 (2020)

    Article  CAS  Google Scholar 

  33. M.D. Wei, Y. Konishi, H.S. Zhou, H. Sugihara, H. Arakawa, Nanotechnology 16, 245 (2005)

    Article  CAS  PubMed  Google Scholar 

  34. A. Parveen, N. Surumbarkuzhali, J. Mater. Sci. Mater. Electron. 31, 11955 (2020)

    Article  CAS  Google Scholar 

  35. W.J. Xu, X. Chen, J. Chen, H.P. Jia, J. Hazard. Mater. 403, 123869 (2021)

    Article  CAS  PubMed  Google Scholar 

  36. J.G. Yu, S.H. Wang, J.X. Low, W. Xiao, Phys. Chem. Chem. Phys. 15, 16883 (2013)

    Article  CAS  PubMed  Google Scholar 

  37. M.D.G. de Luna, M.T. Laciste, N.C. Tolosa, M.C. Lu, Environ. Sci. Pollut. Res. 25, 15216 (2018)

    Article  CAS  Google Scholar 

  38. M. Tadic, D. Trpkov, L. Kopanja, S. Vojnovic, M. Panjan, J. Alloys Compd. 792, 599 (2019)

    Article  CAS  Google Scholar 

  39. O.M. Lemine, A. Alanazi, E.L. Albertz, M. Hjiri, M.O. M’Hamed, S.A. Alrub, A. Alkaoud, C.A.C. Abdullah, Appl. Phys. A-Mater. 126, 471 (2020)

    Article  CAS  Google Scholar 

  40. M. Farahmandjou, F. Soflaee, Phys. Chem. Res. 3, 191 (2015)

    CAS  Google Scholar 

  41. B.B. Chen, X.B. Zhu, M. Crocker, Y. Wang, C. Shi, Appl. Catal., B 154, 73 (2014)

    Article  CAS  Google Scholar 

  42. Z. Jing, S. Wu, Mater. Lett. 58, 3637 (2004)

    Article  CAS  Google Scholar 

  43. H. Liu, P. Li, B. Lu, Y. Wei, Y. Sun, J. Solid State Chem. 182, 1767 (2009)

    Article  CAS  Google Scholar 

  44. C.Y. Ma, D.H. Wang, W.J. Xue, B.J. Dou, H.L. Wang, Z.P. Hao, Environ. Sci. Technol. 45, 3628 (2011)

    Article  CAS  PubMed  Google Scholar 

  45. A. Yusuf, Y. Sun, C. Snape, J. He, C.J. Wang, Y. Ren, H.P. Jia, Mol. Catal. 497, 111204 (2020)

    Article  CAS  Google Scholar 

  46. X.L. Zhang, J.H. Ye, J. Yuan, T. Cai, B. Xiao, Z. Liu, K.F. Zhao, L. Yang, D.N. He, Appl. Catal., A 566, 104 (2018)

    Article  CAS  Google Scholar 

  47. G.L. Zhou, X.L. He, S. Liu, H.M. Xie, M. Fu, J. Ind. Eng. Chem. 21, 932 (2015)

    Article  CAS  Google Scholar 

  48. H.F. Li, G.Z. Lu, Q.G. Dai, Y.Q. Wang, Y. Guo, Y.L. Guo, Appl. Catal., B 102, 475 (2011)

    Article  CAS  Google Scholar 

  49. Z.Z. Zhu, G.Z. Lu, Z.G. Zhang, Y. Guo, Y.L. Guo, Y.Q. Wang, ACS Catal. 3, 1154 (2013)

    Article  CAS  Google Scholar 

  50. S.J. Yang, Y.F. Guo, N.Q. Yan, D.Q. Wu, H.P. He, Z. Qu, J.P. Jia, Ind. Eng. Chem. Res. 50, 9650 (2011)

    Article  CAS  Google Scholar 

  51. X. Han, Z.B. Han, J. Zhao, X.M. Zhao, New J. Chem. 41, 9380 (2017)

    Article  CAS  Google Scholar 

  52. D.D. Li, G.L. Yang, P.L. Li, J.L. Wang, P.Y. Zhang, Catal. Today 277, 257 (2016)

    Article  CAS  Google Scholar 

  53. P. Liu, H.P. He, G.L. Wei, X.L. Liang, F.H. Qi, F.D. Tan, W. Tan, J.X. Zhu, R.L. Zhu, Appl. Catal., B 182, 476 (2016)

    Article  CAS  Google Scholar 

  54. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. 257, 2717 (2011)

    Article  CAS  Google Scholar 

  55. J.R. Liu, Y.M. Zheng, Q.Y. Zhu, Y.X. Dong, S.H. Lu, B. Peng, Y.L. Chen, S.H. Zeng, K.L. Li, Catal. Surv. Asia 24, 207 (2020)

    Article  CAS  Google Scholar 

  56. C. Wang, X.H. Zou, H.B. Liu, T.H. Chen, S.L. Suib, D. Chen, J.J. Xie, M.X. Li, F.W. Sun, Appl. Surf. Sci. 486, 420 (2019)

    Article  CAS  Google Scholar 

  57. Y.S. Wu, Y. Lu, C.J. Song, Z.C. Ma, S.T. Xing, Y.Z. Gao, Catal. Today 201, 32 (2013)

    Article  CAS  Google Scholar 

  58. X.F. Tang, Y.G. Li, X.M. Huang, Y.D. Xu, H.Q. Zhu, J.G. Wang, W.J. Shen, Appl. Catal. B 62, 265 (2006)

    Article  CAS  Google Scholar 

  59. H.B. Huang, D.Y.C. Leung, J. Catal. 280, 60 (2011)

    Article  CAS  Google Scholar 

  60. H.J. Wu, L.D. Wang, J.Q. Zhang, Z.Y. Shen, J.H. Zhao, Catal. Commun. 12, 859 (2011)

    Article  CAS  Google Scholar 

  61. Y. Lou, L. Wang, Z.Y. Zhao, Y.H. Zhang, Z.G. Zhang, G.Z. Lu, Y. Guo, Y.L. Guo, Appl. Catal., B 146, 43 (2014)

    Article  CAS  Google Scholar 

  62. J.H. Zhang, Y.B. Li, L. Wang, C.B. Zhang, H. He, Catal. Sci. Technol. 5, 2305 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.21467002); Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China, (No. ERESEP2020Z13); Project for Guangxi College Young and Middle-aged Teachers Basic Capability Improvement (No.2019KY0050; 2018KY0079); Innovation Project of Guangxi Graduate Education (XYCSZ2020045), and Guangxi Science and Technology Major Project (Guike AA 18118044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mianwu Meng or Siyu Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., He, M., Liu, Y. et al. Effect of calcination temperature on the structural and formaldehyde removal activity of Mn/Fe2O3 catalysts. Res Chem Intermed 47, 3245–3261 (2021). https://doi.org/10.1007/s11164-021-04470-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-021-04470-2

Keywords

Navigation