Skip to main content
Log in

Catalytic nonthermal plasma using efficient cobalt oxide catalyst for complete mineralization of toluene

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The remarkable rise in industrial utilization of volatile organic compounds has increased their presence in environmental matrices, which is a menace for human health. Conventionally, many technologies are in practice for constricting their escape to the environment. However, due to associated adverse health hazards, more efficient technique ensuring complete mineralization is inevitably demanded. In the current study, the degradation of toluene by post-plasma catalysis using cobalt-coupled (Co3O4–CoO) catalyst was studied. Firstly, a new starch-assisted synthesis route for cobalt coupling is presented. Secondly, the research finding of this study showed that the formed cobalt couple exhibited robust performance for toluene degradation up to 99%, which was attributed to their enhanced redox property and adsorbed oxygen content. This promotion in catalytic ability is due to intrinsically greater oxygen storage capacity of coupling. Additionally, the results of this study indicated that toluene degradation was increased significantly with higher input power, whereas, without catalyst application, nonthermal plasma (NTP) alone produced other VOCs as a result of toluene degradation and higher NO concentration at high input power and higher O3 at low input power. Furthermore, it could be concluded that NTP along with cobalt-coupled catalyst promotes toluene degradation, controls the production of all other VOCs and O3 and significantly reduced the production of NO concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Zhu, S. Liu, Y. Cai, X. Gao, J. Zhou, C. Zheng, X. Tu, Appl. Catal. B Environ. 183, 124 (2016)

    Article  CAS  Google Scholar 

  2. G. Liu, J. Ji, H. Huang, R. Xie, Q. Feng, Y. Shu, Y. Zhan, R. Fang, M. He, S. Liu, Chem. Eng. J. 324, 44 (2017)

    Article  CAS  Google Scholar 

  3. X. Yao, J. Zhang, X. Liang, C. Long, Chemosphere 208, 922 (2018)

    Article  CAS  PubMed  Google Scholar 

  4. H. Omran, S. El-Marsafy, F. Ashour, E. Abadir, Egypt. J. Pet. 26(4), 855 (2017)

    Article  Google Scholar 

  5. W. Xu, X. Xu, J. Wu, M. Fu, L. Chen, N. Wang, H. Xiao, X. Chen, D. Ye, RSC Adv. 6(106), 104104 (2016)

    Article  CAS  Google Scholar 

  6. H.T. Znad, K. Katoh, Y. Kawase, J. Hazard. Mater. 141(3), 745 (2007)

    Article  CAS  PubMed  Google Scholar 

  7. M.T. Izquierdo, A.M. de Yuso, R. Valenciano, B. Rubio, M.R. Pino, Appl. Surf. Sci. 264, 335 (2013)

    Article  CAS  Google Scholar 

  8. D. Wang, E. McLaughlin, R. Pfeffer, Y. Lin, Chem. Eng. J. 168(3), 1201 (2011)

    Article  CAS  Google Scholar 

  9. M. Fuller, K. Scowl, Microb. Ecol. 32(2), 171 (1996)

    Article  CAS  PubMed  Google Scholar 

  10. E.C. Alexopoulos, C. Chatzis, A. Linos, BMC Public Health 6(1), 1 (2006)

    Article  Google Scholar 

  11. A.M. Vandenbroucke, R. Morent, N. De Geyter, C. Leys, J. Hazard. Mater. 195, 30 (2011)

    Article  CAS  PubMed  Google Scholar 

  12. H.F. Abbas, W.W. Daud, International journal of hydrogen energy 35(3), 1160 (2010)

    Article  CAS  Google Scholar 

  13. H. Zaitan, M.H. Manero, H. Valdés, J. Environ. Sci. 41, 59 (2016)

    Article  CAS  Google Scholar 

  14. D. Sun, J. Li, M. Xu, T. An, G. Sun, J. Guo, Biotechnol. Bioprocess Eng. 18(1), 125 (2013)

    Article  CAS  Google Scholar 

  15. M. Kalantar, S.M. Zamir, M. Ferdowsi, S.A. Shojaosadati, J. Environ. Chem. Eng. 9(1), 104617 (2020)

    Article  Google Scholar 

  16. D. Dobslaw, K.-H. Engesser, Microb. Biotechnol. J. 8(1), 143–154 (2015)

  17. F. Muccee, S. Ejaz, N. Riaz, Arch. Microbiol. 201(10), 1369 (2019)

    Article  CAS  PubMed  Google Scholar 

  18. M. Schiavon, M. Scapinello, P. Tosi, M. Ragazzi, V. Torretta, E.C. Rada, J. Clean. Prod. 104, 211 (2015)

    Article  CAS  Google Scholar 

  19. X. Tang, F. Feng, L. Ye, X. Zhang, Y. Huang, Z. Liu, K. Yan, Catal. Today 211, 39 (2013)

    Article  CAS  Google Scholar 

  20. B. Dou, F. Bin, C. Wang, Q. Jia, J. Li, J. Electrost. 71(5), 939 (2013)

    Article  CAS  Google Scholar 

  21. H. Huang, D. Ye, X. Guan, Catal. Today 139(1–2), 15 (2008)

    Article  CAS  Google Scholar 

  22. H. Jian, J. Nan, L. Jie, S. Kefeng, L. Na, W. Yan, M. Akira, Plasma Sci. Technol. 18(3), 254 (2016)

    Article  Google Scholar 

  23. M. Ragazzi, P. Tosi, E.C. Rada, V. Torretta, M. Schiavon, Waste Manag. 34(11), 2400 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. D. Mei, X. Tu, J. CO2 Util. 19, 68 (2017)

    Article  CAS  Google Scholar 

  25. M.N. Dinh, J.-M. Giraudon, A. Vandenbroucke, R. Morent, N. De Geyter, J.-F. Lamonier, Appl. Catal. B Environ. 172, 65 (2015)

    Article  Google Scholar 

  26. Y. Li, Z. Fan, J. Shi, Z. Liu, J. Zhou, W. Shangguan, Catal. Today 256, 178 (2015)

    Article  CAS  Google Scholar 

  27. W. Wang, H. Wang, T. Zhu, X. Fan, J. Hazard. Mater. 292, 70 (2015)

    Article  CAS  PubMed  Google Scholar 

  28. X. Zhu, X. Gao, R. Qin, Y. Zeng, R. Qu, C. Zheng, X. Tu, Appl. Catal. B Environ. 170, 293 (2015)

    Article  Google Scholar 

  29. J. Van Durme, J. Dewulf, C. Leys, H. Van Langenhove, Appl. Catal. B Environ. 78(3–4), 324 (2008)

    Article  Google Scholar 

  30. M.N. Lyulyukin, A.S. Besov, A.V. Vorontsov, Appl. Catal. B Environ. 183, 18 (2016)

    Article  CAS  Google Scholar 

  31. J. Van Durme, J. Dewulf, W. Sysmans, C. Leys, H. Van Langenhove, Appl. Catal. B Environ. 74(1–2), 161 (2007)

    Article  Google Scholar 

  32. L. Sun, W. Luo, W. Sun, J. Yang, Res. Chem. Intermed. 45(5), 2903 (2019)

    Article  CAS  Google Scholar 

  33. X. Xu, J. Wu, W. Xu, M. He, M. Fu, L. Chen, A. Zhu, D. Ye, Catal. Today 281, 527 (2017)

    Article  CAS  Google Scholar 

  34. V. Santos, M. Pereira, J. Órfão, J. Figueiredo, Appl. Catal. B Environ. 99(1–2), 353 (2010)

    Article  CAS  Google Scholar 

  35. D. Yu, Y. Liu, Z. Wu, Catal. Commun. 11(8), 788 (2010)

    Article  CAS  Google Scholar 

  36. Y. Mergler, J. Hoebink, B. Nieuwenhuys, J. Catal. 167(2), 305 (1997)

    Article  CAS  Google Scholar 

  37. X. Yao, Y. Li, Z. Fan, Z. Zhang, M. Chen, W. Shangguan, Ind. Eng. Chem. Res. 57(12), 4214 (2018)

    Article  CAS  Google Scholar 

  38. Z. Chang, C. Wang, G. Zhang, Plasma Process. Polym. 17(4), 1900131 (2020)

    Article  CAS  Google Scholar 

  39. C. Subrahmanyam, A. Renken, L. Kiwi-Minsker, Chem. Eng. J. 160(2), 677 (2010)

    Article  CAS  Google Scholar 

  40. U. Roland, F. Holzer, F.-D. Kopinke, Catal. Today 73(3–4), 315 (2002)

    Article  CAS  Google Scholar 

  41. T. Mattisson, H. Leion, A. Lyngfelt, Fuel 88(4), 683 (2009)

    Article  CAS  Google Scholar 

  42. M. Tomatis, H.-H. Xu, J. He, X.-D. Zhang, J. Chem. 2016, 1 (2016)

    Article  Google Scholar 

  43. W. Tang, W. Li, D. Li, G. Liu, X. Wu, Y. Chen, Catal. Lett. 144(11), 1900 (2014)

    Article  CAS  Google Scholar 

  44. D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, E. Tondello, Chem. Mater. 13(2), 588 (2001)

    Article  CAS  Google Scholar 

  45. A. Gulino, G. Fiorito, I. Fragalà, J. Mater. Chem. 13(4), 861 (2003)

    Article  CAS  Google Scholar 

  46. K. Ji, H. Dai, J. Deng, L. Song, B. Gao, Y. Wang, X. Li, Appl. Catal. B Environ. 129, 539 (2013)

    Article  CAS  Google Scholar 

  47. T. Reier, Z. Pawolek, S. Cherevko, M. Bruns, T. Jones, D. Teschner, J. Am. Chem. Soc. 137(40), 13031 (2015)

    Article  CAS  PubMed  Google Scholar 

  48. Y. Liu, H. Dai, J. Deng, L. Zhang, B. Gao, Y. Wang, X. Li, S. Xie, G. Guo, Appl. Catal. B Environ. 140, 317 (2013)

    Article  Google Scholar 

  49. H.L. Chen, H.M. Lee, S.H. Chen, M.B. Chang, Ind. Eng. Chem. Res. 47(7), 7818 (2008)

    Article  CAS  Google Scholar 

  50. A.E. Wallis, J.C. Whitehead, K. Zhang, Catal. Lett. 113(1–2), 29 (2007)

    Article  CAS  Google Scholar 

  51. R. Craciun, B. Nentwick, K. Hadjiivanov, H. Knözinger, Appl. Catal. A Gen. 243(1), 67 (2003)

    Article  CAS  Google Scholar 

  52. Y.-F. Guo, D.-Q. Ye, K.-F. Chen, J.-C. He, W.-L. Chen, J. Mol. Catal. A Chem. 245(1–2), 93 (2006)

    Article  CAS  Google Scholar 

  53. D. Dobslaw, A. Schulz, S. Helbich, C. Dobslaw, K.-H. Engesser, J. Environ. Chem. Eng. 5(6), 5501 (2017)

    Article  CAS  Google Scholar 

  54. H. Huang, D. Ye, D.Y. Leung, F. Feng, X. Guan, J. Mol. Catal. A Chem. 336(1–2), 87 (2011)

    Article  CAS  Google Scholar 

  55. W.-J. Liang, L. Ma, H. Liu, J. Li, Chemosphere 92(10), 1390 (2013)

    Article  CAS  PubMed  Google Scholar 

  56. C. Wang, X. Zhang, Y. Liu, Appl. Surf. Sci. 358, 28 (2015)

    Article  CAS  Google Scholar 

  57. C. Wang, X. Zhang, B. Yuan, Y. Wang, P. Sun, D. Wang, Y. Wei, Y. Liu, Chem. Eng. J. 237, 29 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is based on the work supported by the National Natural Science Foundation of China (51778229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, Z., Zaman, W.Q., Danish, M. et al. Catalytic nonthermal plasma using efficient cobalt oxide catalyst for complete mineralization of toluene. Res Chem Intermed 47, 2407–2420 (2021). https://doi.org/10.1007/s11164-021-04406-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-021-04406-w

Keywords

Navigation