Skip to main content
Log in

Kinetic modelling and proposed mechanistic pathway for photocatalytic degradation of 4-aminopyridine using cuprous oxide nanoparticles

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Cuprous oxide nanoparticles (Cu2O NPs) were synthesized using Tabernaemontana divaricate leaves extract, a reducing and stabilizing agent. Prepared Cu2O NPs were characterized by FT-IR, XPS, XRD and EDX. FT-IR analysis of Cu2O NPs showed a sharp peak at 610 cm−1 attributed to the vibration mode of Cu (I)–O. XPS spectra of Cu2O NPs exhibited peaks at 932.5 eV and 952.6 eV which indicated the presence of Cu 2p3/2 and Cu 2p1/2 and confirmed the formation of Cu2O NPs. Synthesized Cu2O NPs have a cubical and hexagonal shape with an average size length of 85 nm. EDX studies confirmed the high purity of Cu2O NPs with 81.72% copper, 11.05% oxygen and 6.05% carbon. The photocatalytic degradation of 4-aminopyridine onto Cu2O NPs in visible light showed 80% degradation efficiency, 82% chemical oxygen demand removal and 65% total organic carbon (TOC) removal after 235 min of reaction time at pH 3. Lumped kinetic model (LK) for TOC removal of 4-aminopyridine using Cu2O NPs showed a high value of regression coefficient (R2 = 0.99) which emphasized that the experimental data are best fitted to the model. Ten intermediate fragments were detected in LC–MS spectra based on mass-to-charge ratio (m/z) after 235 min of reaction time.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Bai, Q. Sun, R. Xing, D. Wen, X. Tang, J. Hazard. Mater. 181, 916 (2010)

    Article  CAS  PubMed  Google Scholar 

  2. Q. Lin, W. Donghui, W. Jianlong, Bioresour. Technol. 101, 5229 (2010)

    Article  PubMed  Google Scholar 

  3. L. Chu, S. Yu, J. Wang. Radiat. Phys. Chem. 144, 322 (2018)

    Article  CAS  Google Scholar 

  4. V. Gosu, B.R. Gurjar, T.C. Zhang, R.Y. Surampalli, J. Environ. Eng. (United States). 142, 1 (2016)

    CAS  Google Scholar 

  5. S. Chakraborty, M. Roy, R. Saha, Water Sci. Technol. 81, 508 (2020)

    Article  PubMed  Google Scholar 

  6. N. Soni, P. Kam, Anaesth. Intens. Care 10, 120 (1982)

    Article  CAS  Google Scholar 

  7. S. Takenaka, R. Nomura, A. Minegishi, K.I. Yoshida, BMC Microbiol. 13, 62 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. Chakraborty, S. Dutta, R. Saha, S.C. Moi, D. Sukul, S.S. Panja, Desalin. Water Treat. 76, 389 (2017)

    Article  Google Scholar 

  9. R.S. Karale, B. Manu, S. Shrihari, Procedia Soc. Behav. Sci. 9, 25 (2014)

    CAS  Google Scholar 

  10. V. Jassal, U. Shanker, S. Gahlot, Mater. Today Proc. 3, 1874 (2016)

    Article  Google Scholar 

  11. U. Kamran, H.N. Bhatti, M. Iqbal, A. Nazir, Zeitschrift. Fur. Phys. Chemie. 9, 1325 (2019)

    Article  Google Scholar 

  12. O. Nwamezie, U.I. Francis, Chem. Int. 4, 60 (2018)

    Google Scholar 

  13. P. Li, W. Lv, S. Ai, J. Exp. Nanosci. 11, 18 (2016)

    Article  CAS  Google Scholar 

  14. M.V. Kangralkar, V.A. Kangralkar, N. Momin, J. Manjanna, Environ. Nanotechnol. Monit. Manag. 12, 100265 (2019)

    Google Scholar 

  15. M. Behera, G. Giri, Mater. Sci. Pol. 32, 702 (2014)

    Article  CAS  Google Scholar 

  16. M. Behera, G. Giri, Int. J. Ind. Chem. 7, 157 (2016)

    Article  CAS  Google Scholar 

  17. C.Y. Toe, Z. Zheng, H. Wu, J. Scott, R. Amal, Y.H. Ng, Angew. Chemie 130, 13801 (2018)

    Article  Google Scholar 

  18. Y. Kwon, A. Soon, H. Han, H. Lee, J. Mater. Chem. A. 3, 156 (2015)

    Article  CAS  Google Scholar 

  19. A.M. Ghadiri, N. Rabiee, M. Bagherzadeh, M. Kiani, Y. Fatahi, A.D. Bartolomeo, R. Dinarvand, T.J. Webster, Nanotechnology 31, 42 (2020)

    Article  Google Scholar 

  20. M.W. Amer, A.M. Awwad, Chem. Int. 7, 1 (2021)

    CAS  Google Scholar 

  21. J.S. Kumar, M. Jana, P. Khanra, P. Samanta, H. Koo, N.C. Murmu, T. Kuila, Electrochim. Acta. 193, 104 (2016)

    Article  CAS  Google Scholar 

  22. N. Nosheen, I. Bibi, S. Kamal, M. Iqbal, S. Nouren, K. Jilani, M. Umair, S. Ata, Int. J. Biol. Macromol. 106, 1203 (2018)

    Article  Google Scholar 

  23. R. Sivaraj, P.K.S.M. Rahman, P. Rajiv, H.A. Salam, R. Venckatesh, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 133, 178 (2014)

    Article  CAS  Google Scholar 

  24. Y. Yulizar, J. Gunlazuardi, D.O.B. Apriandanu, T.W.W. Syahfitri, Mater. Lett. 277, 128349 (2020)

    Article  CAS  Google Scholar 

  25. S.G. Pratibha, J.K. Ratan, J. Indian Chem. Soc. 97, 320 (2020)

    CAS  Google Scholar 

  26. P. Nanta, K. Kasemwong, W. Skolpap, J. Environ. Chem. Eng. 6, 794 (2018)

    Article  CAS  Google Scholar 

  27. K.Y. Shin, J.Y. Hong, J. Jang, J. Hazard. Mater. 190, 36 (2011)

    Article  CAS  PubMed  Google Scholar 

  28. P. Senthil Kumar, S. Ramalingam, C. Senthamarai, M. Niranjanaa, P. Vijayalakshmi, S. Sivanesan, Desalination 261, 52 (2010)

    Article  CAS  Google Scholar 

  29. R. Kushwaha, S. Garg, S. Bajpai, Toxicol. Environ. Chem. 101, 26 (2019)

    Article  CAS  Google Scholar 

  30. T. Tauc, P. Kubelka, F. Munk, J. Phys. Chem. Lett. 9, 6814 (2018)

    Article  Google Scholar 

  31. Y. Yulizar, R. Bakri, D.O.B. Apriandanu, T. Hidayat, Nano-Struct. Nano-Objects 16, 300 (2018)

    Article  CAS  Google Scholar 

  32. S. Tao, M. Yang, H. Chen, M. Ren, G. Chen, J. Colloid Interface Sci. 486, 16 (2017)

    Article  CAS  PubMed  Google Scholar 

  33. C.C. Tseng, J.H. Hsieh, W. Wu, Thin Solid Films 519, 5169 (2011)

    Article  CAS  Google Scholar 

  34. D.O.B. Apriandanu, Y. Yulizar, Nano-Struct. Nano-Objects. 20, 100401 (2019)

    Article  CAS  Google Scholar 

  35. Y. Yulizar, A. Eprasatya, D.O. Bagus Apriandanu, R.T. Yunarti, Vacuum 183, 109821 (2020)

    Article  Google Scholar 

  36. N. Nurmalasari, Y. Yulizar, D.O.B. Apriandanu, I.O.P. Conf, Ser. Mater. Sci. Eng. 763, 1 (2020)

    Google Scholar 

  37. N. Saima, G. Mustafa, S.M. Ibrahim, S. Naz, M. Iqbal, M. Yaseen, T. Javed, J. Nisar, J. Mater. Res. Technol. 9, 4206 (2020)

    Article  Google Scholar 

  38. A. Naseer, A. Ali, S. Ali, A. Mahmood, H.S. Kusuma, A. Nazir, M. Yaseen, J. Mater. Res. Technol. 9, 9093 (2020)

    Article  CAS  Google Scholar 

  39. M. Kooti, L. Matouri, Sci. Iran. 17, 73 (2010)

    CAS  Google Scholar 

  40. B. Balamurugan, B.R. Mehta, S.M. Shivaprasad, Appl. Phys. Lett. 79, 3176 (2001)

    Article  CAS  Google Scholar 

  41. M. Nasrollahzadeh, S. Mohammad Sajadi, J. Colloid Interface Sci. 457, 141 (2015)

    Article  CAS  PubMed  Google Scholar 

  42. W. Chaiyana, J. Schripsema, K. Ingkaninan, S. Okonogi, Phytomedicine 20, 543 (2013)

    Article  CAS  PubMed  Google Scholar 

  43. A. Raja, S.A. Kumar, R.P. Marthandam, J. Jayachandiran, C.P. Khatiwada, K. Kaviyarasu, R.G. Raman, M. Swaminathan, J. Photochem. Photobiol. B Biol. 181, 53 (2018)

    Article  CAS  Google Scholar 

  44. A. Athipornchai, Asian J. Pharm Clin. Res. 11, 45 (2018)

    Article  Google Scholar 

  45. L. Khazdooz, A. Zarei, T. Ahmadi, H. Aghaei, N. Nazempour, L. Golestanifar, N. Sheikhan, React. Kinet. Mech. Catal. 122, 229 (2017)

    Article  CAS  Google Scholar 

  46. N. Omrani, A. Nezamzad-Ehejhieh, J. Photochem. Photobiol. A Chem. 400, 112726 (2020)

    Article  CAS  Google Scholar 

  47. H. Azimi, S. Kuhri, A. Osvet, G. Matt, L.S. Khanzada, M. Lemmer, N.A. Luechinger, J. Am. Chem. Soc. 136, 7233 (2014)

    Article  CAS  PubMed  Google Scholar 

  48. Z. He, W. Que, J. Chen, Y. He, G. Wang, J. Phys. Chem. Solids. 74, 924 (2013)

    Article  CAS  Google Scholar 

  49. D.E. Gu, Y. Lu, B.C. Yang, Y. Da Hu, Chem. Commun. 21, 2453 (2008)

    Article  Google Scholar 

  50. R. Rasch, A. Stricher, R.W. Truss, J. Appl. Polym. Sci. 131, (2014)

  51. M. Deo, S. Mujawar, O. Game, A. Yengantiwar, A. Banpurkar, S. Kulkarni, J. Jog, S. Ogale, Nanoscale 3, 4706 (2011)

    Article  CAS  PubMed  Google Scholar 

  52. Y. Pratiwi, Y. Yulizar, D.O.B. Apriandanu, IOP Conf. Ser. Mater. Sci. Eng. 763, 1 (2020)

    Google Scholar 

  53. Y. Yulizar, E. Kusrini, D.O.B. Apriandanu, N. Nurdini, Surf. Interfaces. 19, 100437 (2019)

    Article  Google Scholar 

  54. R. Kushwaha, S. Garg, S. Bajpai, Res. Chem. Intermed. 44, 5759 (2018)

    Article  CAS  Google Scholar 

  55. R. Kushwaha, S. Garg, S. Bajpai, A.S. Giri, Asia-Pacific J. Chem. Eng. 13, 3 (2018)

    Article  Google Scholar 

  56. A.M. King, N.B. Menke, K.D. Katz, A.F. Pizon, J. Med. Toxicol. 8, 314 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  57. A.S. Giri, A.K. Golder, Ind. Eng. Chem. Res. 53, 1351 (2014)

    Article  CAS  Google Scholar 

  58. R. Borah, E. Saikia, S. J. Bora, B. Chetia. RSC Adv. 102, 100443 (2016)

  59. M. Mousavi-Kamazani, Z. Zarghami, R. Rahmatolahzadeh, M. Ramezani.  Adv. Powder Technol. 9, 2078 (2017)

  60. A. Kerour, S. Boudjadar, R. Bourzami, B. Allouche. J. Solid State Chem. 263, 79 (2018)

  61. X. Yu, J. Zhang, J. Zhang, J. Niu, J. Zhao, Y. Wei, B. Yao. Chem. Eng. J. 374, 316 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeeta Garg.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attri, P., Garg, S. & Ratan, J.K. Kinetic modelling and proposed mechanistic pathway for photocatalytic degradation of 4-aminopyridine using cuprous oxide nanoparticles. Res Chem Intermed 47, 1535–1562 (2021). https://doi.org/10.1007/s11164-020-04381-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04381-8

Keywords

Navigation