Skip to main content

Bimetallic Ni–Zn/TiO2 catalysts for selective hydrogenation of alkyne and alkadiene impurities from alkenes stream

Abstract

This study investigates the alternative of replacing noble metals by base metals as catalysts for selective hydrogenation of polyunsaturated hydrocarbons. Nickel catalysts are active for this type of reaction, but poorly selective. However, former calculations anticipated that Ni–Zn alloys could have higher selectivity to alkenes than monometallic Ni depending on the Ni/Zn atomic ratio in the alloy. In this contribution, Ni–Zn alloy nanoparticles supported on TiO2 are synthesized as catalysts for selective hydrogenation of acetylene and butadiene. The designed catalysts with 0.5 wt% Ni loading and various Ni/Zn nominal ratios are prepared by deposition–precipitation with urea (DPU). STEM-HAADF imaging coupled with EDS analysis reveals that Ni–Zn bimetallic particles are formed after reduction treatment at 450 °C. Alloying Ni with Zn leads to a slight increase in the average particle size and a broadening of the size distribution compared to monometallic Ni. However, the average Ni/Zn atomic ratio measured by EDS in the bimetallic particles is always higher than the nominal one, which could be due to Zn evaporation under the beam. The results of acetylene hydrogenation show that although the catalytic activity is slightly reduced after alloying Ni with Zn, the selectivity to ethylene is enhanced from 50% up to 85%, at the expense of the formation of oligomers (coupling products). However, the bimetallic Ni–Zn catalysts suffer from progressive deactivation in this reaction. During butadiene hydrogenation performed in the presence of an excess of propene, the bimetallic Ni–Zn/TiO2 catalysts are significantly more stable, with a high and constant selectivity to butenes (> 95%), compared with Ni/TiO2, which deactivates rapidly in the first hours. Some hypotheses concerning the observed differences in catalytic stability are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    B.J. Burger, M.E. Thompson, W.D. Cotter, J.E. Bercaw, J. Am. Chem. Soc. 112, 1566 (1990)

    CAS  Google Scholar 

  2. 2.

    N.S. Schbib, M.A. García, C.E. Gígola, A.F. Errazu, Ind. Eng. Chem. Res. 35, 1496 (1996)

    CAS  Google Scholar 

  3. 3.

    E.L. Mohundro, in American Institute of Chemical Engineers 15th Ethylene Producers Conference, New Orleans (2003)

  4. 4.

    M.L. Derrien, Chapter 18 Selective Hydrogenation Applied to the Refining of Petrochemical Raw Materials Produced by Steam Cracking, in Studies in Surface Science and Catalysis, vol. 27, ed. by L. Cerveny (Elsevier, 1986), pp. 613–666

  5. 5.

    F.H. Puls, K.D. Ruhnke, in butene-1 Containing Feed Purification Process (CS-165) (United States Exxon Research and Engineering Co. (Florham Park, NJ), US Patent 4,260,840 (1981)

  6. 6.

    J. Howeizi, S. Taghvaei-Ganjali, M. Malekzadeh, F. Motiee, S. Sahebdelfar, Res. Chem. Intermed. 45, 3165 (2019)

    CAS  Google Scholar 

  7. 7.

    R.J. Gartside, T. Skourlis, Process for the Selective Hydrogenation of Alkynes and/or Dienes in an Olefin-Containing Hydrocarbon Stream, Lummus Technology Inc. (1515 Broad Street, Bloomfield NJ 07003-3096, US), US 7,301,062 (2007)

  8. 8.

    S.A. Blankenship, R.W. Voight, J.A. Perkins, J.E. Fried Jr, (Google Patents, 2003)

  9. 9.

    Q. Zhang, J. Li, X. Liu, Q. Zhu, Appl. Catal. A 197, 221 (2000)

    CAS  Google Scholar 

  10. 10.

    W. Ludwig, A. Savara, R.J. Madix, S. Schauermann, H.-J. Freund, J. Phys. Chem. C 116, 3539 (2012)

    CAS  Google Scholar 

  11. 11.

    W. Ludwig, A. Savara, K.-H. Dostert, S. Schauermann, J. Catal. 284, 148 (2011)

    CAS  Google Scholar 

  12. 12.

    M. Wilde, K. Fukutani, W. Ludwig, B. Brandt, J.H. Fischer, S. Schauermann, H.J. Freund, Angew. Chem. Int. Ed. 47, 9289 (2008)

    CAS  Google Scholar 

  13. 13.

    B. Ngamsom, N. Bogdanchikova, M.A. Borja, P. Praserthdam, Catal. Commun. 5, 243 (2004)

    CAS  Google Scholar 

  14. 14.

    A. Pachulski, R. Schödel, P. Claus, Appl. Catal. A 400, 14 (2011)

    CAS  Google Scholar 

  15. 15.

    S. Komeili, M.T. Ravanchi, A. Taeb, Res. Chem. Intermed. 44, 1335 (2018)

    CAS  Google Scholar 

  16. 16.

    M.T. Ravanchi, S. Fadaeerayeni, M.R. Fard, Res. Chem. Intermed. 42, 4797 (2016)

    Google Scholar 

  17. 17.

    D. Teschner, J. Borsodi, A. Wootsch, Z. Révay, M. Hävecker, A. Knop-Gericke, S.D. Jackson, R. Schlögl, Science 320, 86 (2008)

    CAS  PubMed  Google Scholar 

  18. 18.

    N.A. Khan, S. Shaikhutdinov, H.-J. Freund, Catal. Lett. 108, 159 (2006)

    CAS  Google Scholar 

  19. 19.

    G. Vilé, D. Albani, N. Almora-Barrios, N. López, J. Pérez-Ramírez, ChemCatChem 8, 21 (2016)

    Google Scholar 

  20. 20.

    C. Louis, L. Delannoy, Chapter One - Selective Hydrogenation of Polyunsaturated Hydrocarbons and Unsaturated Aldehydes Over Bimetallic Catalysts, in Advances in Catalysis, vol. 64, ed. by C. Song (Academic Press, 2019), pp. 1–88

  21. 21.

    L.L. Zhang, M.X. Zhou, A.Q. Wang, T. Zhang, Chem. Rev. 120, 683 (2020)

    CAS  PubMed  Google Scholar 

  22. 22.

    R. Hou, W. Yu, M.D. Porosoff, J.G. Chen, T. Wang, J. Catal. 316, 1 (2014)

    CAS  Google Scholar 

  23. 23.

    S. Leviness, V. Nair, A.H. Weiss, Z. Schay, L. Guczi, J. Mol. Catal. 25, 131 (1984)

    CAS  Google Scholar 

  24. 24.

    P.T. Witte, P.H. Berben, S. Boland, E.H. Boymans, D. Vogt, J.W. Geus, J.G. Donkervoort, Top. Catal. 55, 505 (2012)

    CAS  Google Scholar 

  25. 25.

    F. Studt, F. Abild-Pedersen, T. Bligaard, R.Z. Sørensen, C.H. Christensen, J.K. Nørskov, Science 320, 1320 (2008)

    CAS  PubMed  Google Scholar 

  26. 26.

    Z. Wang, G. Wang, C. Louis, L. Delannoy, J. Catal. 347, 185 (2017)

    CAS  Google Scholar 

  27. 27.

    C.S. Spanjers, J.T. Held, M.J. Jones, D.D. Stanley, R.S. Sim, M.J. Janik, R.M. Rioux, J. Catal. 316, 164 (2014)

    CAS  Google Scholar 

  28. 28.

    C.S. Spanjers, R.S. Sim, N.P. Sturgis, B. Kabius, R.M. Rioux, ACS Catal. 5, 3304 (2015)

    CAS  Google Scholar 

  29. 29.

    M. Kang, M.W. Song, T.W. Kim, K.L. Kim, Can. J. Chem. Eng. 80, 63 (2002)

    CAS  Google Scholar 

  30. 30.

    B. Bridier, N. López, J. Pérez-Ramírez, Dalton Trans. 39, 8412 (2010)

    CAS  PubMed  Google Scholar 

  31. 31.

    H. Li, H. Li, W.-L. Dai, W. Wang, Z. Fang, J.-F. Deng, Appl. Surf. Sci. 152, 25 (1999)

    CAS  Google Scholar 

  32. 32.

    S.P. Lee, Y.W. Chen, J. Chem. Technol. Biotechnol. 75, 1073 (2000)

    CAS  Google Scholar 

  33. 33.

    S. Yoshida, H. Yamashita, T. Funabiki, T. Yonezawa, J. Chem. Soc. Faraday Trans. 1 F 80, 1435 (1984)

    CAS  Google Scholar 

  34. 34.

    Y. Liu, X. Liu, Q. Feng, D. He, L. Zhang, C. Lian, R. Shen, G. Zhao, Y. Ji, D. Wang, Adv. Mater. 28, 4747 (2016)

    CAS  PubMed  Google Scholar 

  35. 35.

    Y. Chen, J. Chen, Appl. Surf. Sci. 387, 16 (2016)

    CAS  Google Scholar 

  36. 36.

    K. Bourikas, C. Kordulis, A. Lycourghiotis, Chem. Rev. 114, 9754 (2014)

    CAS  PubMed  Google Scholar 

  37. 37.

    P. Burattin, M. Che, C. Louis, J. Phys. Chem. B 102, 2722 (1998)

    CAS  Google Scholar 

  38. 38.

    A. Aguilar-Tapia, L. Delannoy, C. Louis, C.W. Han, V. Ortalan, R. Zanella, J. Catal. 344, 515 (2016)

    CAS  Google Scholar 

  39. 39.

    G. Yuan, C. Louis, L. Delannoy, M.A. Keane, J. Catal. 247, 256 (2007)

    CAS  Google Scholar 

  40. 40.

    D.M. Fernandes, R. Silva, A.A.W. Hechenleitner, E. Radovanovic, M.A.C. Melo, E.A.G. Pineda, Mater. Chem. Phys. 115, 110 (2009)

    CAS  Google Scholar 

  41. 41.

    C. Ricolleau, J. Nelayah, T. Oikawa, Y. Kohno, N. Braidy, G. Wang, F. Hue, L. Florea, V. Pierron Bohnes, D. Alloyeau, Microscopy 62, 283–293 (2013)

    CAS  PubMed  Google Scholar 

  42. 42.

    A. Hugon, L. Delannoy, J.-M. Krafft, C. Louis, J. Phys. Chem. C 114, 10823 (2010)

    CAS  Google Scholar 

  43. 43.

    T. Imoto, Y. Harano, Y. Nishi, S. Masuda, Bull. Chem. Soc. Jpn. 37, 441 (1964)

    CAS  Google Scholar 

  44. 44.

    S. Lew, A.F. Sarofim, M. Flytzani-Stephanopoulos, Chem. Eng. Sci. 47, 1421 (1992)

    CAS  Google Scholar 

  45. 45.

    M. Liang, W. Kang, K. Xie, J. Nat. Gas Chem. 18, 110 (2009)

    CAS  Google Scholar 

  46. 46.

    M.A. Valenzuela, P. Bosch, J. Jiménez-Becerrill, O. Quiroz, A.I. Páez, J. Photochem, Photobiol. A 148, 177–182 (2002)

    CAS  Google Scholar 

  47. 47.

    K. Hadjiivanov, M. Mihaylov, N. Abadjieva, D. Klissurski, J. Chem. Soc. Faraday Trans. 94, 3711 (1998)

    CAS  Google Scholar 

  48. 48.

    J. van de Loosdrecht, A.M. van der Kraan, A.J. van Dillen, J.W. Geus, J. Catal. 170, 217 (1997)

    Google Scholar 

  49. 49.

    D. Kohl, M. Henzler, G. Heiland, Surf. Sci. 41, 403 (1974)

    Google Scholar 

  50. 50.

    D.F. Anthrop, A.W. Searcy, J. Phys. Chem. 68, 2335 (1964)

    CAS  Google Scholar 

  51. 51.

    W.B. Pearson, International Series of Monographs on Metal Physics and Physical Metallurgy, in A Handbook of Lattice Spacings and Structures of Metals and Alloys, vol. 4, (Pergamon, 1958), pp. 1039–1044

  52. 52.

    I.S. Mashkovsky, G.N. Baeva, A.Y. Stakheev, M.N. Vargaftik, N.Y. Kozitsyna, I.I. Moiseev, Mendeleev Commun. 24, 355 (2014)

    CAS  Google Scholar 

  53. 53.

    D.L. Trimm, N.W. Cant, I.O. Liu, Catal. Today 178, 181 (2011)

    CAS  Google Scholar 

  54. 54.

    B. Hammer, J.K. Nørskov, Adv. Catal. 45, 71 (2000)

    CAS  Google Scholar 

  55. 55.

    G. Bond, Discuss. Faraday Soc. 41, 200 (1966)

    Google Scholar 

  56. 56.

    A.H. Al-ShaikhAli, A. Jedidi, L. Cavallo, K. Takanabe, Chem. Commun. 51, 12931 (2015)

    CAS  Google Scholar 

  57. 57.

    A.H. Al-ShaikhAli, A. Jedidi, D.H. Anjum, L. Cavallo, K. Takanabe, ACS Catal. 7, 1592 (2017)

    CAS  Google Scholar 

  58. 58.

    R.T. Vang, K. Honkala, S. Dahl, E.K. Vestergaard, J. Schnadt, E. Lægsgaard, B.S. Clausen, J.K. Nørskov, F. Besenbacher, Nat. Mater. 4, 160 (2005)

    CAS  PubMed  Google Scholar 

  59. 59.

    W.-J. Kim, S.H. Moon, Catal. Today 185, 2 (2012)

    CAS  Google Scholar 

  60. 60.

    M.D. Argyle, C.H. Bartholomew, Catalysts 5, 145 (2015)

    CAS  Google Scholar 

  61. 61.

    M.T. Ravanchi, S. Sahebdelfar, S. Komeili, Rev. Chem. Eng. 34, 215 (2018)

    Google Scholar 

  62. 62.

    I.Y. Ahn, J.H. Lee, S.K. Kim, S.H. Moon, Appl. Catal. A 360, 38 (2009)

    CAS  Google Scholar 

  63. 63.

    A. Sárkány, L. Guczi, A.H. Weiss, Appl. Catal. 10, 369 (1984)

    Google Scholar 

  64. 64.

    Á. Molnár, A. Sárkány, M. Varga, J. Mol. Catal. A: Chem. 173, 185 (2001)

    Google Scholar 

  65. 65.

    M. Stammbach, D. Thomas, D. Trimm, M. Wainwright, Appl. Catal. 58, 209 (1990)

    CAS  Google Scholar 

  66. 66.

    C. Anjaneyulu, L.O. da Costa, M.C. Ribeiro, R.C. Rabelo-Neto, L.V. Mattos, A. Venugopal, F.B. Noronha, Appl. Catal. A 519, 85 (2016)

    CAS  Google Scholar 

  67. 67.

    J. Rodrıguez, A. Marchi, A. Borgna, A. Monzón, J. Catal. 171, 268 (1997)

    Google Scholar 

  68. 68.

    P. Berteau, S. Ceckiewicz, B. Delmon, Appl. Catal. 31, 361 (1987)

    CAS  Google Scholar 

  69. 69.

    S. Chinayon, O. Mekasuwandumrong, P. Praserthdam, J. Panpranot, Catal. Comm. 9, 2297 (2008)

    CAS  Google Scholar 

  70. 70.

    B. Mutz, A.M. Ganzler, M. Nachtegaal, O. Muller, R. Frahm, W. Kleist, J.D. Grunwaldt, Catalysts 7, 279 (2017)

    Google Scholar 

  71. 71.

    L. Piccolo, L. Kibis, J. Catal. 332, 112 (2015)

    CAS  Google Scholar 

  72. 72.

    J.L. Figueiredo, Carbon Formation and Gasification on Nickel, in Progress in Catalyst Deactivation. NATO Advanced Study Institutes Series (Series E: Applied Sciences), vol. 54 (Springer, Dordrecht, 1982), pp. 45–63

  73. 73.

    I. Jacob, M. Fisher, Z. Hadari, M. Herskowitz, J. Wlsniak, N. Shamir, M.H. Mintz, J. Catal. 101, 28 (1986)

    CAS  Google Scholar 

  74. 74.

    R. Kumar, K.K. Pant, Appl. Surf. Sci. 515, 146010 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

Dr. Zhao Wang thanks the China Scholarship Council (CSC) for his PhD scholarship. The authors thank the French METSA network for free access to JEOL ARM 200F microscope. Zhao Wang also thanks Prof. Haolin Tang and Prof. Haining Zhang for their suggestions on writing manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Laurent Delannoy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2385 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wang, G., Louis, C. et al. Bimetallic Ni–Zn/TiO2 catalysts for selective hydrogenation of alkyne and alkadiene impurities from alkenes stream. Res Chem Intermed 47, 91–116 (2021). https://doi.org/10.1007/s11164-020-04327-0

Download citation

Keywords

  • Deposition–precipitation
  • Ni–Zn/TiO2
  • Nanoalloy
  • Bimetallic catalysts
  • Selective hydrogenation