Skip to main content

Advertisement

Log in

Photovoltaic and spectroscopic properties of bacteriochlorin-based photosensitizer: molecular approach

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The biophotovoltaic features of the porphyrin- and bacteriochlorin-based solar cells in different media were investigated through quantum chemistry calculations. The results show that a decrease in the chemical potential and electrophilicity facilitates the charge transfer process. Also, the bacteriochlorins have a lower energy barrier of electron injection than that of porphyrin, because of a longer charge transfer distance and less electron–hole overlap. Moreover, nonpolar solvents accelerate the free charge production, due to the favorable changes in the exciton radius and exciton binding. Improved spectroscopic properties are observed for the dyes in the solvent medium, which may be related to an increment in the probability of the electronic transition and reduced band gaps. Based on the simulated absorption spectra, bacteriochlorins are the preferred light-harvesting materials than porphyrin in the visible region. Moreover, the development of the push–pull model in the bacteriochlorin structure increases their energy conversion ability, due to advanced quantum chemistry reactivity properties. According to the final efficiency, bacteriochlorins are the preferred candidates in comparison with porphyrin to be applied in the dye-sensitized solar cells, in agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Kannan, D. Vakeesan, Renew. Sus. Energy Rev. 62, 1092 (2016)

    Google Scholar 

  2. H. Zhu, T. Lian, Energy Environ. Sci. 5, 9406 (2012)

    CAS  Google Scholar 

  3. Ö. Birel, S. Nadeem, H. Duman, J Fluoresc. 27, 1075 (2017)

    CAS  PubMed  Google Scholar 

  4. J. Feng, B. Xiao, J. Phys. Chem. C 118, 19655 (2014)

    CAS  Google Scholar 

  5. A.J. Nozik, J. Miller, Chem. Rev. 110, 6443 (2010)

    CAS  PubMed  Google Scholar 

  6. B. O’Regan, M. Grätzel, Nature 353, 737 (1991)

    CAS  Google Scholar 

  7. K.L. Wu, A.J. Huckaba, J.N. Clifford, Y.W. Yang, A. Yella, E. Palomares, Grätzel M, Chi Y, Nazeeruddin MK, , Inorg Chem 55, 7388 (2016)

    CAS  PubMed  Google Scholar 

  8. J.L. Hou, Y.G. Weng, P.Y. Liu, L.N. Cui, Q.Y. Zhu, J. Dai, Inorg. Chem. 58, 2736 (2019)

    CAS  PubMed  Google Scholar 

  9. C. Lee, J.H. Yu, H. Choi, S.O. Kang, J. Ko, R. Humphry-Baker, M. Grätzel, M.K. Nazeeruddin, Inorg. Chem. 47, 2267 (2008)

    CAS  PubMed  Google Scholar 

  10. T. Toyao, M. Minakata, K. Iyatani, A. Ebrahimi, P.-C. Chen, C.-B. Tsai, Y. Horiuchi, M. Matsuoka, M. Anpo, Res. Chem. Intermed. 39, 415 (2013)

    CAS  Google Scholar 

  11. D. Qi, L. Wang, J. Zhang, RSC Adv. 5, 74557 (2015)

    CAS  Google Scholar 

  12. T. Ibn-Mohammed, S.C.L. Koh, I.M. Reaney, A. Acquaye, G. Schileo, K.B. Mustapha, R. Greenough, Renew. Sus. Energy Rev. 80, 1321 (2017)

    CAS  Google Scholar 

  13. D. Wang, W. Wei, Y.H. Hu, Ind. Eng. Chem. Res. 59, 10457 (2020)

    CAS  Google Scholar 

  14. J. Gong, K. Sumathy, Q. Qiao, Z. Zhou, Renew. Sus. Energy Rev. 68, 234 (2017)

    CAS  Google Scholar 

  15. J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Chem. Rev. 115, 2136 (2015)

    CAS  PubMed  Google Scholar 

  16. W. Wei, M. Li, Y.H. Hu, Ind. Eng. Chem. Res. 58, 8743 (2019)

    CAS  Google Scholar 

  17. W. Wei, K. Sun, Y.H. Hu, J. Mater. Chem. A 4, 12054 (2016)

    CAS  Google Scholar 

  18. W. Wei, K. Sun, Y.H. Hu, J. Mater. Chem. A 2, 16842 (2014)

    CAS  Google Scholar 

  19. H. Wang, K. Sun, F. Tao, D.J. Stacchiola, Y.H. Hu, Angew. Chem. Int. Ed. 52, 9210 (2013)

    CAS  Google Scholar 

  20. W. Shi, B. Peng, L. Lin, R. Li, J. Zhang, T. Peng, Mater. Chem. Phys. 163, 348 (2015)

    CAS  Google Scholar 

  21. J. He, G. Benkö, F. Korodi, T. Polívka, R. Lomoth, B. Akermark, L. Sun, A. Hagfeldt, V. Sundström, J. Am. Chem. Soc. 124, 4922 (2002)

    CAS  PubMed  Google Scholar 

  22. M.K. Nazeruddin, A. Kay, I. Podicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 115, 6382 (1993)

    Google Scholar 

  23. M.K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel, J. Am, Chem. Soc. 127, 16835 (2005)

    CAS  Google Scholar 

  24. G. Li, A. Yella, D.G. Brown, S.I. Gorelsky, M.K. Nazeeruddin, M. Grätzel, C.P. Berlinguette, M. Shatruk, Inorg. Chem. 53, 5417 (2014)

    CAS  PubMed  Google Scholar 

  25. A.K. Biswas, S. Barik, A. Sen, A. Das, B. Ganguly, J. Phys. Chem. C 36, 20763 (2014)

    Google Scholar 

  26. K. Kakiage, Y. Aoyama, T. Yano, T. Otsuka, T. Kyomen, M. Unno, M. Hanaya, Chem. Commun. 50, 6379 (2014)

    CAS  Google Scholar 

  27. R. Kacimi, M. Bourass, T. Toupance, N. Wazzan, M. Chemek, A. El Alamy, L. Bejjit, K. Alimi, M. Bouachrine, Res. Chem. Intermed. 46, 3247 (2020)

    CAS  Google Scholar 

  28. J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N.-L. Cevey-Ha, C. Yi, M.K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 133, 18042 (2011)

    CAS  PubMed  Google Scholar 

  29. N. Zhang, B. Zhang, L. Sun, Y. Li, Y. Yang, C. Fan, X. Xue, J. Yan, X. Li, Y. Feng, Res. Chem. Intermed. 41, 8713 (2015)

    CAS  Google Scholar 

  30. F. Arkan, M. Izadyar, Mater. Chem. Phys. 196, 142 (2017)

    CAS  Google Scholar 

  31. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Nat. Chem. 6, 242 (2014)

    CAS  PubMed  Google Scholar 

  32. D. Zhang, N. Yamamoto, T. Yoshida, H. Minoura, Trans. Mater. Res. Soc. Jpn. 27, 811 (2002)

    CAS  Google Scholar 

  33. L.K. Singh, T. Karlo, A. Pandey, J. Renew. Sustain. Energy 5, 043115 (2013)

    Google Scholar 

  34. C. Qin, A.E. Clark, Chem. Phys. Lett. 438, 26 (2007)

    CAS  Google Scholar 

  35. I.C. Maurya, S. Singh, P. Srivastava, B. Maiti, L. Bahadur, Opt. Mater. 90, 273 (2019)

    Google Scholar 

  36. L. Huang, Y.-Y. Huang, P. Mroz, G.P. Tegos, T. Zhiyentayev, S.K. Sharma, Z. Lu, T. Balasubramanian, M. Krayer, C. Ruzie, E. Yang, H.L. Kee, C. Kirmaier, J.R. Diers, D.F. Bocian, D. Holten, J.S. Lindsey, M.R. Hamblin, Antimicrob. Agents Chemother 54, 3834 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. M.P. Balanay, D.H. Kim, J. Phys. Chem. A 121, 6660 (2017)

    CAS  PubMed  Google Scholar 

  38. S. Chakraborty, H.-C. You, C.-K. Huang, B.-Z. Lin, C.-L. Wang, M.-C. Tsai, C.-L. Liu, C.-Y. Lin, J. Phys. Chem. C 121, 7081 (2017)

    CAS  Google Scholar 

  39. X.-F. Wang, O. Kitao, H. Zhou, H. Tamiaki, S.-I. Sasaki, J. Phys. Chem. C 113, 7954 (2009)

    CAS  Google Scholar 

  40. J.-F. Yin, M. Velayudham, D. Bhattacharya, H.-C. Lin, K.-L. Lu, Coord. Chem. Rev. 256, 3008 (2012)

    CAS  Google Scholar 

  41. T. Bessho, S.M. Zakeeruddin, C.-Y. Yeh, E.W.-G. Diau, M. Grätzel, Angew Chem Int Ed 49, 6646 (2010)

    CAS  Google Scholar 

  42. K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-I. Fujisawa, M. Hanaya, Chem. Commun. 51, 15894 (2015)

    CAS  Google Scholar 

  43. Y. Guo, X. Lu, G. Li, L. Zhao, S. Wei, W. Guo, J. Photochem. Photobiol. A 332, 232 (2017)

    CAS  Google Scholar 

  44. E. Hosseinzadeh, N.L. Hadipour, G. Parsafar, J. Photochem. Photobiol. A 349, 171 (2017)

    CAS  Google Scholar 

  45. Z. Parsa, S.S. Naghavi, N. Safari, J. Phys. Chem. A 122, 5870 (2018)

    CAS  PubMed  Google Scholar 

  46. M. Xie, F.-Q. Bai, J. Wang, Y.-Q. Zheng, Z. Lin, Phys. Chem. Chem. Phys. 20, 3741 (2018)

    CAS  PubMed  Google Scholar 

  47. C. McCleese, Z. Yu, N.N. Esemoto, C. Kolodziej, B. Maiti, S. Bhandari, B.D. Dunietz, C. Burda, M. Ptaszek, J. Phys. Chem. B 122, 4131 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. J.R. Stromberg, A. Marton, H.L. Kee, C. Kirmaier, J.R. Diers, C. Muthiah, M. Taniguchi, J.S. Lindsey, D.F. Bocian, G.J. Meyer, D. Holten, J. Phys. Chem. C 111, 15464 (2007)

    CAS  Google Scholar 

  49. T. Higashino, Y. Tsuji, Y. Fujimori, K. Sugiura, S. Ito, H. Imahori, Chem. Lett. 44, 1395 (2015)

    CAS  Google Scholar 

  50. N. Paul, L. Suresh, J.V. Vaghasiya, L. Yang, Y. Zhang, D.K. Nandakumar, M.R. Jones, S.C. Tan, Biosens. Bioelectron. 165, 112423 (2020)

    CAS  PubMed  Google Scholar 

  51. L. Suresh, J.V. Vaghasiya, D.K. Nandakumar, T. Wu, M.R. Jones, S.C. Tan, Chem. 5, 1847 (2019)

    CAS  Google Scholar 

  52. L. Tan, J. Yu, T. Kawakami, M. Kobayashi, P. Wang, Z.-Y. Wang-Otomo, J.-P. Zhang, J. Phys. Chem. Lett. 9, 3278 (2018)

    CAS  PubMed  Google Scholar 

  53. S.K. Ravi, T. Wu, V.S. Udayagiri, X.M. Vu, Y. Wang, M.R. Jones, S.C. Tan, Adv. Mater. 30, 1802290 (2018)

    Google Scholar 

  54. L. Suresh, V. Vaghasiya, M.R. Jones, S.C. Tan, ACS Sustainable Chem. Eng. 7, 8834 (2019)

    CAS  Google Scholar 

  55. S.K. Ravi, N. Paul, L. Suresh, A.T. Salim, T. Wu, Z. Wu, M.R. Jones, S.C. Tan, Mater. Horiz. 7, 866 (2020)

    CAS  Google Scholar 

  56. C. Pleumphon, S. Thiangtham, C. Pechyen, H. Manuspiya, S. Ummartyotin, J. Biobased Mater. Bioenergy 11, 321 (2017)

    CAS  Google Scholar 

  57. A.M. Sevim, S. Akar, M. Ozacar, A. Gul, Sol. Energy 160, 18 (2018)

    CAS  Google Scholar 

  58. H. Fang, B. Xu, X. Li, D.L. Kuhn, Z. Zander, G. Tian, V. Chen, R. Chu, B.G. DeLacy, Y. Rao, H.-L. Dai, Langmuir 33, 7036 (2017)

    CAS  PubMed  Google Scholar 

  59. E. Mosconi, A. Selloni, F. De Angelis, J. Phys. Chem. C 116, 5932 (2012)

    CAS  Google Scholar 

  60. C. Climent, A. Carreras, P. Alemany, D. Casanova, Chem. Phys. Lett. 663, 45 (2016)

    CAS  Google Scholar 

  61. F. Arkan, M. Izadyar, Renew. Sustain. Energy Rev. 94, 609 (2018)

    CAS  Google Scholar 

  62. M.T. Samani, S.M. Hashemianzadeh, J. Mol. Liq. 273, 27 (2019)

    CAS  Google Scholar 

  63. F. Arkan, M. Izadyar, A. Nakhaeipour, Energy 114, 559 (2016)

    CAS  Google Scholar 

  64. F. Barati-darband, M. Izadyar, F. Arkan, J. Phys. Chem. C 122, 23968 (2018)

    CAS  Google Scholar 

  65. F. Barati-darband, M. Izadyar, F. Arkan, J. Phys. Chem. A 123, 2831 (2019)

    CAS  PubMed  Google Scholar 

  66. A.C. Bevilacqua, M.H. Köhler, B.A. Iglesias, P.C. Piquini, Comput. Mater. Sci. 158, 228 (2019)

    CAS  Google Scholar 

  67. N. Godbout, D.R. Salahub, J. Andzelm, E. Wimmer, Can. J. Chem. 70, 560 (1992)

    CAS  Google Scholar 

  68. R.E. Stratmann, G.E. Scuseria, M.J. Frisch, J. Chem. Phys. 109, 8218 (1998)

    CAS  Google Scholar 

  69. A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988)

    CAS  Google Scholar 

  70. T. Lu, F. Chen, J. Comput. Chem. 33, 580 (2012)

    PubMed  Google Scholar 

  71. F. Arkan, M. Izadyar, A. Nakhaeipour, Mol. Phys. 113, 3815 (2015)

    CAS  Google Scholar 

  72. D. Seo, K.-W. Park, J. Kim, J. Hong, K. Kwak, Comput Theor. Chem. 1081, 30 (2016)

    CAS  Google Scholar 

  73. U. Mehmood, I.A. Hussein, M. Daud, S. Ahmed, K. Harrabi, Dyes Pigment. 118, 152 (2015)

    CAS  Google Scholar 

  74. D. Matthews, P. Infelta, M. Grätzel, Sol. Energy Mater. Sol. Cells 44, 119 (1996)

    CAS  Google Scholar 

  75. A. Hlel, A. Mabrouk, M. Chemek, I.B. Khalifa, K. Alimi, Comput. Condens. Mater. 3, 30 (2015)

    Google Scholar 

  76. S.B. Novir, S.M. Hashemianzadeh, Curr. Appl. Phys. 14, 1401 (2014)

    Google Scholar 

  77. M.R. Narayan, J. Singh, J. Appl. Phys. 114, 154515 (2013)

    Google Scholar 

  78. M.R. Narayan, J. Singh, J. Appl. Phys. 114, 073510 (2013)

    Google Scholar 

Download references

Acknowledgements

Research Council of the Ferdowsi University of Mashhad is gratefully acknowledged for supporting this project (3/50629). We hereby acknowledge that part of this computation was performed at the Sci-HPC center of the Ferdowsi University of Mashhad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Izadyar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 454 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peymani, S., Izadyar, M. & Arkan, F. Photovoltaic and spectroscopic properties of bacteriochlorin-based photosensitizer: molecular approach. Res Chem Intermed 47, 1071–1085 (2021). https://doi.org/10.1007/s11164-020-04317-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04317-2

Keywords

Navigation