Skip to main content
Log in

Fabrication of Ag/ZnO nanowire thin films and their photocatalytic reactivities

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

We have successfully prepared the ZnO nanowire (nw) thin films which show different surface wettabilities to discuss the correlation between the photocatalytic reactivities and the surface morphologies. When the ZnO(seed)/glass was horizontally placed in the ZnO precursor solution, relatively short and thick ZnO hexagonal cylinders were randomly accumulated on the substrate (denoted as “h-ZnO(nw)/glass”). The h-ZnO(nw)/glass showed high surface wettability (water contact angle: 0°) because liquid water easily went into the micrometer-sized inter-particle voids via capillary effect. In contrast, when the ZnO(seed)/glass was vertically placed in the ZnO precursor solution, relatively long and thin ZnO nanowires perpendicularly grew and aligned on the substrate (denoted as “v-ZnO(nw)/glass”). The v-ZnO(nw)/glass showed high water-repellent property (water contact angle: 100°–143°) because of a lotus effect exhibited by the thin ZnO nanowires. The v-ZnO(nw)/glass had about twice the surface area of the h-ZnO(nw)/glass but did not show sufficiently high photocatalytic reactivity for the decomposition of methylene blue (MB) in aqueous solution because of its water-repellent property. However, the high surface area of the v-ZnO(nw)/glass was useful for the photocatalytic decomposition of acetaldehyde in gaseous phase. The deposition of Ag particles especially improved the photocatalytic reactivity of the h-ZnO(nw)/glass up to 2.8–6 times, because lots of Ag particles were deposited on the sidewalls of the ZnO hexagonal cylinders due to their high surface wettability. However, since the Ag particles were deposited only on the tips of the ZnO nanowires due to the water-repellent property of the v-ZnO(nw)/glass, the photocatalytic reactivity was only improved up to 1.6–2.4 times.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Li, G.W. Meng, L.D. Zhang, F. Phillipp, Appl. Phys. Lett. 76, 2011 (2000)

    CAS  Google Scholar 

  2. Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng, Appl. Phys. Lett. 78, 407 (2001)

    CAS  Google Scholar 

  3. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)

    CAS  PubMed  Google Scholar 

  4. K.-S. Kao, W.-C. Shih, W.-T. Ye, D.-L. Cheng, Thin Solid Films 605, 77 (2016)

    CAS  Google Scholar 

  5. Y. Bai, H. Yu, Z. Li, R. Amal, G.Q. Lu, L. Wang, Adv. Mater. 24, 5850 (2012)

    CAS  PubMed  Google Scholar 

  6. Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Appl. Phys. Lett. 84, 3654 (2004)

    CAS  Google Scholar 

  7. D. Jeong, K. Kim, S.-I. Park, Y.-H. Kim, S. Kim, S.-I. Kim, Res. Chem. Intermed. 40, 97 (2014)

    CAS  Google Scholar 

  8. F.-R. Juang, C. Kao, Thin Solid Films 708, 138114 (2020)

    CAS  Google Scholar 

  9. X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, D. Zhu, J. Am. Chem. Soc. 126, 62 (2004)

    CAS  PubMed  Google Scholar 

  10. Y. Tak, H. Kim, D. Lee, K. Yong, Chem. Commun. 4585, 132 (2008)

    Google Scholar 

  11. D. Zhang, F. Zeng, Res. Chem. Intermed. 36, 1055 (2010)

    CAS  Google Scholar 

  12. Y. Wei, J. Kong, L. Yang, L. Ke, H.R. Tan, H. Liu, Y. Huang, X.W. Sun, X. Lu, H. Du, J. Mater. Chem. A 1, 5045 (2013)

    CAS  Google Scholar 

  13. M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Thin Solid Films 605, 2 (2016)

    CAS  Google Scholar 

  14. M. Samadi, M. Zirak, A. Naseri, M. Kheirabadi, M. Ebrahimi, A.Z. Moshfegh, Res. Chem. Intermed. 45, 2197 (2019)

    CAS  Google Scholar 

  15. L. Li, M. Ma, S. Guan, H. Wu, Res. Chem. Intermed. 44, 4365 (2018)

    CAS  Google Scholar 

  16. A. Fernández, G. Lassaletta, V.M. Jiménez, A. Justo, A.R. González-Elipe, J.-M. Hermann, H. Tahiri, Y. Ait-Ichou, Appl. Catal. B Environ. 7, 49 (1995)

    Google Scholar 

  17. M. Takeuchi, H. Yamashita, M. Matsuoka, M. Anpo, T. Hirao, N. Itoh, N. Iwamoto, Catal. Lett. 67, 135 (2000)

    CAS  Google Scholar 

  18. M. Anpo, M. Takeuchi, J. Catal. 216, 505 (2003)

    CAS  Google Scholar 

  19. M. Takeuchi, S. Dohshi, T. Eura, M. Anpo, J. Phys. Chem. B 107, 14278 (2003)

    CAS  Google Scholar 

  20. M. Takeuchi, K. Sakamoto, K. Tsujimaru, M. Anpo, Catal. Lett. 131, 189 (2009)

    CAS  Google Scholar 

  21. B. İkizler, S. Peker, Thin Solid Films 558, 149 (2014)

    Google Scholar 

  22. B.-R. Huang, W.-C. Ke, Y.-H. Peng, R.-H. Liou, Thin Solid Films 605, 243 (2016)

    CAS  Google Scholar 

  23. P. Zhang, T. Tachikawa, Z. Biana, T. Majima, Appl. Catal. B: Environ. 176–177, 678 (2015)

    Google Scholar 

  24. S. Gao, W. Wang, Y. Ni, C. Lu, Z. Xu, J. Alloys Compd. 647, 981 (2015)

    CAS  Google Scholar 

  25. R. Li, H. Han, F. Zhang, D. Wang, C. Li, Energy Environ. Sci. 7, 1369 (2014)

    CAS  Google Scholar 

  26. J. Peng, P. Zhan, R. Deng, Y. Zhang, X. Xie, Res. Chem. Intermed. 45, 4637 (2019)

    CAS  Google Scholar 

  27. A. Mclaren, T. Valdes-Solis, G. Li, S.C. Tsang, J. Am. Chem. Soc. 131, 12540 (2009)

    CAS  PubMed  Google Scholar 

  28. P.-C. Chang, Z. Fan, D. Wang, W.-Y. Tseng, W.-A. Chiou, J. Hong, J.G. Lu, Chem. Mater. 16, 5133 (2004)

    CAS  Google Scholar 

  29. C.-H. Lee, M.-S. Choi, Thin Solid Films 605, 157 (2016)

    CAS  Google Scholar 

  30. D. Yuan, R. Guo, Y. Wei, W. Wu, Y. Ding, Z.L. Wang, S. Das, Adv. Funct. Mater. 20, 3484 (2010)

    CAS  Google Scholar 

  31. Y. Wei, W. Wu, R. Guo, D. Yuan, S. Das, Z.L. Wang, Nano Lett. 10, 3414 (2010)

    CAS  PubMed  Google Scholar 

  32. L. Vayssieres, K. Keis, S.-E. Lindquist, A. Hagfeldt, J. Phys. Chem. B 105, 3350 (2001)

    CAS  Google Scholar 

  33. N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, K. Koumoto, Adv. Mater. 14, 418 (2002)

    CAS  Google Scholar 

  34. L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R.J. Saykally, P. Yang, Angew. Chem. Int. Ed. 42, 3031 (2003)

    CAS  Google Scholar 

  35. L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai, P. Yang, Nano Lett. 5, 1231 (2005)

    CAS  PubMed  Google Scholar 

  36. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114, 9919–9986 (2014)

    CAS  PubMed  Google Scholar 

  37. K. Wenderich, G. Mul, Chem. Rev. 116, 14587–14619 (2016)

    CAS  PubMed  Google Scholar 

  38. M. Takeuchi, T. Kimura, M. Hidaka, D. Rakhmawaty, M. Anpo, J. Catal. 246, 235 (2007)

    CAS  Google Scholar 

  39. M. Takeuchi, J. Deguchi, M. Hidaka, S. Sakai, K. Woo, P.-P. Choi, J.-K. Park, M. Anpo, Appl. Catal. B Environ. 89, 406 (2009)

    CAS  Google Scholar 

  40. Y. Zhang, Y. Chen, L. Shi, J. Lib, Z. Guo, J. Mater. Chem. 22, 799 (2012)

    CAS  Google Scholar 

  41. V. Amendola, O.M. Bakr, F. Stellacci, Plasmonics 5, 85 (2010)

    CAS  Google Scholar 

  42. A. Amirjani, D.F. Haghshenas, Sens. Actuators B Chem. 273, 1768 (2018)

    CAS  Google Scholar 

  43. S. Sarina, E.R. Waclawik, H. Zhu, Green Chem. 15, 1814 (2013)

    CAS  Google Scholar 

  44. B. Subash, B. Krishnakumar, M. Swaminathan, M. Shanthi, Res. Chem. Intermed. 39, 3181 (2013)

    CAS  Google Scholar 

  45. Y. Liu, S. Wei, W. Gao, J. Hazard. Mater. 287, 59 (2015)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Takeuchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 458 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeuchi, M., Koba, T. & Matsuoka, M. Fabrication of Ag/ZnO nanowire thin films and their photocatalytic reactivities. Res Chem Intermed 46, 4883–4896 (2020). https://doi.org/10.1007/s11164-020-04249-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04249-x

Keywords

Navigation