Skip to main content

Advertisement

Log in

Fabrication of microsphere-like Bi3O4Cl/BiOI Z-scheme heterostructure composites and its enhanced photocatalytic performance for degradation of MO and RhB

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Microsphere-like Bi3O4Cl/BiOI Z-scheme heterostructure photocatalysts with improved photocatalytic performance were synthesized by hydrothermal method. SEM images showed that Bi3O4Cl had morphological regulation effect on BiOI, which could greatly increase the active sites of the composites. And a possible process for the change of morphology was put forward. Two dyes with different charging properties (MO and RhB) were selected to evaluate the activities of the prepared photocatalysts. As a consequence, the 10%Bi3O4Cl/BiOI composite showed 99.8% of the degradation efficiency for MO degradation in 90 min of simulated sunlight irradiation, the degradation rate constant (0.0577 min−1) was 28.9 and 5.5 times higher than that of pure Bi3O4Cl and BiOI, respectively. Similarly, the 10%Bi3O4Cl/BiOI composite had more superior photocatalytic performance than pure Bi3O4Cl and BiOI. The enhancement of photocatalytic performance was mainly attributed to the increased light absorption, charge separation efficiency and specific surface area, which was proved by DRS, PL, EIS and N2 adsorption–desorption characterizations. Further, the radical trapping experiments confirmed that holes (h+) and superoxide radicals (·O2) were the main active species for the photodegradation. Combining with the DRS and trapping experiments, a possible Z-scheme heterojunction photocatalytic mechanism was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme. 1
Fig. 1
Fig. 2
Fig. 3
Scheme. 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. T. Wu, P. Wang, J. Qian, Y. Ao, C. Wang, J. Hou, Dalton Trans. 46, 13793 (2017)

    CAS  PubMed  Google Scholar 

  2. F. Wu, X. Li, W. Liu, S. Zhang, Appl. Surf. Sci. 405, 60 (2017)

    CAS  Google Scholar 

  3. F. Guo, Y. Cai, W. Guan, H. Huang, Y. Liu, J. Phys. Chem. Solid. 110, 370 (2017)

    CAS  Google Scholar 

  4. J.C. Lyu, Z. Hu, Z.L. Li, M. Ge, J. Phys. Chem. Solid. 129, 61 (2019)

    CAS  Google Scholar 

  5. H.J. Cui, Y.Z. Zhou, J.F. Mei, Z.Y. Li, S. Xu, J. Phys. Chem. Solid. 112, 80 (2018)

    CAS  Google Scholar 

  6. D. Kandi, S. Martha, A. Thirumurugan, P.M. Parida, J. Phys. Chem. C. 121, 4834 (2017)

    CAS  Google Scholar 

  7. A.K. Chakraborty, M.A. Kebede, React. Kinet. Mech. Cat. 106, 83 (2012)

    CAS  Google Scholar 

  8. J. Li, L.Z. Zhang, Y.J. Li, Y. Yu, Nanoscale. 6, 167 (2014)

    PubMed  Google Scholar 

  9. J. Li, L.J. Cai, J. Shang, Y. Yu, L.Z. Zhang, Adv. Mater. 28, 4059 (2016)

    CAS  PubMed  Google Scholar 

  10. H.N. Che, G.B. Che, E.H. Jiang, C.B. Liu, H.J. Dong, C.M. Li, J. Taiwan Inst. Chem. E. 91, 224 (2018)

    CAS  Google Scholar 

  11. Y. Huang, Y.M. He, M. Cui, Q.Y. Nong, J.X. Yu, F.M. Wu, X.Q. Meng, Catal. Commun. 76, 19 (2016)

    CAS  Google Scholar 

  12. Y.Y. Ma, Y.J. Chen, Z. Feng, Q.Q. Chen, R.S. Jin, Y. Lu, Y. Huang, Y. Wu, Y.M. He, J. Water. Process. Eng. 18, 65 (2017)

    Google Scholar 

  13. J. Luo, X.S. Zhou, L. Ma, X.Y. Xu, J. Mol. Catal. A Chem. 410, 168 (2015)

    CAS  Google Scholar 

  14. P. Li, X. Zhao, C.J. Jia, H.G. Sun, L.M. Sun, X.F. Cheng, L. Liu, W.L. Fan, J. Mol. Catal. A Chem. 1, 3421 (2013)

    CAS  Google Scholar 

  15. T.B. Li, G. Chen, C. Zhou, Z.Y. Shen, R.C. Jin, J.X. Sun, Dalton Trans. 40, 6751 (2011)

    CAS  PubMed  Google Scholar 

  16. F. Chen, C.G. Niu, Q. Yang, X.M. Li, G.M. Zeng, Ceram. Int. 42, 2515 (2016)

    CAS  Google Scholar 

  17. B. Chai, X. Wang, RSC Adv. 5, 7589 (2015)

    CAS  Google Scholar 

  18. L. Chen, S.F. Yin, S.L. Luo, R. Huang, Q. Zhang, T. Hong, P.C.T. Au, Ind. Eng. Chem. Res. 51, 6760 (2012)

    CAS  Google Scholar 

  19. H.M. Qin, K. Wang, L.S. Jiang, J. Li, X.Y. Wu, G.K. Zhang, J. Alloy. Compd. 821, 153417 (2020)

    CAS  Google Scholar 

  20. M.E. Malefane, U. Feleni, P.J. Mafa, A.T. Kuvarega, Appl. Surf. Sci. 514, 145940 (2020)

    CAS  Google Scholar 

  21. H.H. Liu, C. Yang, J. Huang, J.F. Chen, J.B. Zhong, J.Z. Li, Inorg. Chem. Commun. 113, 107806 (2020)

    CAS  Google Scholar 

  22. L.Y. Huang, L. Yang, Y.P. Li, C.B. Wang, Y.Y. Xu, L.J. Huang, Y.H. Song, Appl. Surf. Sci. 527, 146748 (2020)

    CAS  Google Scholar 

  23. E.H. Jiang, X.T. Liu, H.N. Che, C.B. Liu, H.J. Dong, G.B. Che, RSC Adv. 8, 37200 (2018)

    CAS  Google Scholar 

  24. H. An, B. Lin, C. Xue, X.Q. Yan, Y.Z. Dai, J.J. Wei, G.D. Yang, Chinese. J. Catal. 39, 654 (2018)

    CAS  Google Scholar 

  25. J. Li, Y. Yu, L.Z. Zhang, Nanoscale 6, 8473 (2014)

    CAS  PubMed  Google Scholar 

  26. X. Zhang, Z.H. Ai, F.L. Jia, L.Z. Zhang, J. Mater. Chem. A. 112(3), 747 (2008)

    CAS  Google Scholar 

  27. L.Q. Ye, Y.R. Su, X.L. Jin, H.Q. Xie, C. Zhang, Environ. Sci. NANO 1, 90 (2014)

    CAS  Google Scholar 

  28. B. Liu, H.C. Zeng, Small. 1, 566 (2005)

    CAS  PubMed  Google Scholar 

  29. A.N. Zulkifili, A. Fujiki, S. Kimijima, Appl. Sci. 8, 216 (2018)

    Google Scholar 

  30. S.B. Ning, L.Y. Ding, Z.G. Lin, H.L. Zhang, H.X. Lin, J.L. Long, X.X. Wang, Appl. Catal. B Environ. 185, 203 (2016)

    CAS  Google Scholar 

  31. J. Yin, Z. Wu, M. Fang, Y. Xu, W. Zhu, C. Li, J. Chin. Chem. Soc-Taip. 65, 1044 (2018)

    CAS  Google Scholar 

  32. L.J. Shen, S.J. Liang, W.M. Wu, L.W. Liang, L. Wu, Dalton Trans. 42, 13649 (2013)

    CAS  PubMed  Google Scholar 

  33. Z.H. Ye, X.Y. Xiao, J.Y. Chen, Y. Wang, J. Photochem. Photobiol. A. 368, 153 (2019)

    CAS  Google Scholar 

  34. R.Y. Cao, H.C. Yang, S.W. Zhang, X.J. Xu, Appl. Catal. B: Environ. 258, 117997 (2019)

    CAS  Google Scholar 

  35. L.L. Zhang, X.P. Yue, J.X. Liu, J.Q. Feng, X.C. Zhang, C.M. Zhang, L. Li, C.M. Fan, Sep. Purif. Technol. 231, 115917 (2020)

    CAS  Google Scholar 

  36. S. Adhikari, S. Selvaraj, D.H. Kim, Appl. Catal. B Environ. 244, 11 (2019)

    CAS  Google Scholar 

  37. J. Hu, S.X. Weng, Z.Y. Zheng, Z.X. Pei, M.L. Huang, P. Liu, J. Hazard. Mater. 264, 293 (2014)

    CAS  PubMed  Google Scholar 

  38. L.J. Cheng, X.M. Hu, L. Hao, Mater. Res. Express. 5, 065901 (2018)

    Google Scholar 

  39. S. Vadivel, B. Paul, M. Kumaravel, S. Hariganesh, S. Rajendran, M.M.M.G. Prasanga Gayanath Mantilaka, G. Mamba, P. Puviarasu, Inorg. Chem. Commun. 115, 107855 (2020)

    CAS  Google Scholar 

  40. S. Vadivel, S. Hariganesh, B. Paul, G. Mamba, P. Puviarasu, Colloid. Surface. A. 592, 124583 (2020)

    CAS  Google Scholar 

  41. J. Li, G.M. Zhan, Y. Yu, L.Z. Zhang, Nat. Commun. 7, 11480 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. L. Kronik, Y. Shapira, Surf. Sci. Rep. 37(1–5), 1 (1999)

    CAS  Google Scholar 

  43. Y. Wang, X. Xiao, J.Y. Chen, M.L. Lu, X.Y. Zeng, Appl. Surf. Sci. 510, 145341 (2020)

    CAS  Google Scholar 

  44. Y. Wang, J.X. Zhao, Z. Chen, F. Zhang, W. Guo, H.M. Lin, F.Y. Qu, Appl. Catal. B Environ. 244, 76 (2019)

    CAS  Google Scholar 

  45. H.W. Huang, Y. He, X.W. Li, M. Li, C. Zeng, F. Dong, X. Du, T.R. Zhang, Y.H. Zhang, J. Mater. Chem. A. 3, 24547 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21878115, 21546002, 21376099, 21076092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyan Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, L., Xiao, X., Wang, Y. et al. Fabrication of microsphere-like Bi3O4Cl/BiOI Z-scheme heterostructure composites and its enhanced photocatalytic performance for degradation of MO and RhB. Res Chem Intermed 46, 4685–4704 (2020). https://doi.org/10.1007/s11164-020-04231-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04231-7

Keywords

Navigation