Skip to main content
Log in

Adsorption/desorption of acid violet-7 onto magnetic MnO2 prior to its quantification by UV–visible spectroscopy: optimized by fractional factorial design

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A highly efficient magnetic adsorbent is presented to preconcentrate acid violet-7 (AV-7) prior quantifying by UV–visible spectroscopy (λmax = 520 nm). The adsorbent consisting of MnO2 and Fe3O4 was synthesized via precipitation method. The green preparation method was simple and fast; it was performed at room temperature, without consuming organic solvents and thermal treatment. The synthesis strategy is based on using cetrimonium bromide as a surfactant. The surfactant was adsorbed onto negative sites of Fe3O4 then trapped Mn2+ ions and finally by adding NH3, nanoparticles of MnO2 were formed. The nanocomposite was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, alternating gradient force magnetometer and Brunauer–Emmett–Teller. The strong magnetic property of Fe3O4 and porous structure of MnO2 with positive charges enable efficient adsorption of AV-7 via magnetic solid phase extraction. The optimum conditions with respect to circumscribed fractional factorial design were pH (4.0 ± 0.2), sorbent amount (20 mg), adsorption time (20 min), adsorption temperature (308 K), eluent kind [ethanol/NaNO3 (1 mL/50 mg)], desorption time (10 min) and desorption temperature (283 K). The adsorption mechanism of AV-7 onto adsorbent was explained based on FT-IR spectra. The swelling behavior of adsorbent was investigated. Limit of detection (0.86 ng mL−1), relative standard deviation (n = 5) (1.61%), preconcentration factor (50) and linearity of dynamic range (20–400 μg L−1) perform the applicability of adsorbent in AV-7 preconcentration. The adsorbent is reusable for 15 times and durable for 100 days. The swelling behavior was investigated. The effects of interference ions and three dyes on the preconcentration recovery were studied. Temkin model and pseudo-second order were fitted with isotherm adsorption and kinetic adsorption, respectively. According to thermodynamic parameters, the adsorption is endothermic and spontaneous. The adsorbent was successfully applied to quantify AV-7 from a leather sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.S. Seyedi, M.R. Sohrabi, F. Motiee, S. Mortazavinik, Res. Chem. Intermed. 46, 1645 (2020)

    CAS  Google Scholar 

  2. M. Nagpal, R. Kakkar, Res. Chem. Intermed. 46, 2497 (2020)

    CAS  Google Scholar 

  3. A.G. Shende, S.G. Ghugal, D. Vidyasagar, S.S. Umare, S.B. Kokane, R. Sasikala, Mater. Chem. Phys. 221, 483 (2019)

    CAS  Google Scholar 

  4. D.A. González-Casamachin, J. Rivera De la Rosa, C.J. Lucio-Ortiz, D.A. De Haro De, D.X. Rio, G.A. Martínez-Vargas, N.E.Dávila Flores-Escamilla, V.M. Guzman, E.Moctezuma-Velazquez Ovando-Medina, Chem. Eng. J. 373, 325 (2019)

    Google Scholar 

  5. M. Hasanzadeh, A. Simchi, H. Shahriyari Far, J. Ind. Eng. Chem. 81, 405 (2020)

    CAS  Google Scholar 

  6. S. Verma, R.K. Dutta, Green Mater. Wastewater Treat. 2020, 223 (2020)

    Google Scholar 

  7. P. Vijayalakshmi, V.S.S. Bala, K.V. Thiruvengadaravi, P. Panneerselvam, M. Palanichamy, S. Sivanesan, Sep. Sci. Technol. 46, 155 (2010)

    Google Scholar 

  8. F. Zhang, J. Yu, Bioprocess. Eng. 23, 295 (2000)

    CAS  Google Scholar 

  9. D. Yuvali, I. Narin, M. Soylak, E. Yilmaz, J. Pharmaceut. Biomed. Anal. 179, 113001 (2020)

    CAS  Google Scholar 

  10. M. Eskandarpour, P. Jamshidi, M.R. Moghaddam, J.B. Ghasmei, F. Shemirani, J. Sci. Food Agric. 100, 2272 (2020)

    CAS  PubMed  Google Scholar 

  11. K. Aguilar-Arteaga, C. Hernández-Mera, L. Díaz-Batalla, A. Castañeda-Ovando, A.E. Cruz-Pérez, E. Barrado-Esteban, M. Carrillo-Cárdenas, Anal. Bioanal. Chem. 412, 1203 (2020)

    CAS  PubMed  Google Scholar 

  12. P. Arabkhani, A. Asfaram, J. Hazard. Mater. 384, 121394 (2020)

    PubMed  Google Scholar 

  13. W. Liu, R. Wang, F. Hu, P. Wu, T. Huang, M. Fizir, H. He, Anal. Bioanal. Chem. 410, 7357 (2018)

    CAS  PubMed  Google Scholar 

  14. H. Abdolmohammad-Zadeh, Z. Javan, Microchim. Acta 182, 1447 (2015)

    CAS  Google Scholar 

  15. M. Fayazi, M.A. Taher, D. Afzali, A. Mostafavi, Sens. Actuators B Chem. 228, 1 (2016)

    CAS  Google Scholar 

  16. B.Z. Fang, C.L. Zhou, J.W. Cao, N. Zhang, J.L. Han, H. Li, X.D. Wang, Appl. Mech. Mater. 675–677, 543 (2014)

    Google Scholar 

  17. G. Huang, Y. Zhang, L. Wang, P. Sheng, H. Peng, Carbon 125, 595 (2017)

    CAS  Google Scholar 

  18. J. Yang, T. Hong, J. Deng, Y. Wang, F. Lei, J. Zhang, B. Yu, Z. Wu, X. Zhang, C.F. Guo, Chem. Commun. 55, 13737 (2019)

    CAS  Google Scholar 

  19. N. Toutounchian, A. Ahmadpour, M.M. Heravi, F.F. Bamoharram, A. Ayati, F. Deymeh, Res. Chem. Intermed. 42, 3283 (2016)

    CAS  Google Scholar 

  20. P.W. Araujo, C.V. Gomez, E. Marcano, Z. Benzo, J. Anal. Chem. 351, 204 (1995)

    CAS  Google Scholar 

  21. A.I. Decloedt, A. Van Landschoot, L. Vanhaecke, Anal. Bioanal. Chem. 408, 7731 (2016)

    CAS  PubMed  Google Scholar 

  22. M. Alvand, F. Shemirani, Microchim. Acta 183, 1749 (2016)

    CAS  Google Scholar 

  23. Y. Yang, T. Yue, Y. Wang, Z. Yang, X. Jin, Microchem. J. 148, 42 (2019)

    CAS  Google Scholar 

  24. Y. Zhang, L. Liu, K. Wang, Y. Wang, J. Supercond. Nov. Magn. 32, 3503 (2019)

    CAS  Google Scholar 

  25. I.E. Fernández, J. Rodríguez-Páez, J. Alloys Compd. 780, 756 (2019)

    Google Scholar 

  26. K. Li, X. Liu, T. Zheng, D. Jiang, Z. Zhou, C. Liu, X. Zhang, Y. Zhang, D. Losic, Chem. Eng. J. 370, 136 (2019)

    CAS  Google Scholar 

  27. A. Mazaheri, M. Bostanian, Res. Chem. Intermed. 46, 1 (2020)

    Google Scholar 

  28. A. Samzadeh-Kermani, M. Mirzaee, M. Ghaffari-Moghaddam, Adv. Biol. Chem. 6, 1 (2016)

    CAS  Google Scholar 

  29. Z. Schnepp, S.C. Wimbush, M. Antonietti, C. Giordano, Chem. Mater. 22, 5340 (2010)

    CAS  Google Scholar 

  30. J. Rodrıguez-Paéz, A. Caballero, M. Villegas, C. Moure, P. Duran, J. Fernandez, J. Eur. Ceram. Soc. 21, 925 (2001)

    Google Scholar 

  31. M. Hemmati, M. Rajabi, A. Asghari, Microchim. Acta 185, 160 (2018)

    Google Scholar 

  32. Z. Ma, Y. Guan, H. Liu, J. Polym. Sci. A Polym. Chem. 43, 3433 (2005)

    CAS  Google Scholar 

  33. D. Prahas, Y. Kartika, N. Indraswati, S. Ismadji, Chem. Eng. J. 140, 32 (2008)

    CAS  Google Scholar 

  34. J. Zhang, L. Wang, A. Wang, Ind. Eng. Chem. Res. 46, 2497 (2007)

    CAS  Google Scholar 

  35. N.N. Nassar, Sep. Sci. Technol. 45, 1092 (2010)

    CAS  Google Scholar 

  36. A.M. Ealias, M. Saravanakumar, J. Environ. Manag. 206, 215 (2018)

    Google Scholar 

  37. R. Rajumon, J.C. Anand, A.M. Ealias, D.S. Desai, G. George, M. Saravanakumar, J. Environ. Chem. Eng. 7, 103479 (2019)

    CAS  Google Scholar 

  38. R. Abraham, S. Mathew, S. Kurian, M. Saravanakumar, A.M. Ealias, G. George, Ultrason. Sonochem. 49, 175 (2018)

    CAS  PubMed  Google Scholar 

  39. A. Mary Ealias, M. Saravanakumar, Crit. Rev. Environ. Sci. Technol. 49, 1959 (2019)

    CAS  Google Scholar 

  40. H. Zhang, Y. Wang, C. Liu, H. Jiang, J. Alloys Compd. 517, 1 (2012)

    CAS  Google Scholar 

  41. C. Bauer, P. Jacques, A. Kalt, Chem. Phys. Lett. 307, 397 (1999)

    CAS  Google Scholar 

  42. P. Jamshidi, M. Alvand, F. Shemirani, Microchim. Acta 186, 487 (2019)

    Google Scholar 

  43. P. Jamshidi, F. Shemirani, Colloids Surf. A Physicochem. Eng. Aspects 571, 151 (2019)

    CAS  Google Scholar 

  44. S. Rangabhashiyam, N. Anu, M.G. Nandagopal, N. Selvaraju, J. Environ. Chem. Eng. 2, 398 (2014)

    CAS  Google Scholar 

  45. A. Roghanizad, M.K. Abdolmaleki, S.M. Ghoreishi, M. Dinari, J. Mol. Liq. 300, 112367 (2020)

    CAS  Google Scholar 

  46. G. George, M.P. Saravanakumar, Environ. Sci. Pollut. Res. 25, 30236 (2018)

    CAS  Google Scholar 

  47. S. Rokni, R. Haji Seyed Mohammad Shirazi, M. Miralinaghi, E. Moniri, Res. Chem. Intermed. 46, 2247 (2020)

    CAS  Google Scholar 

  48. Y.H. Li, Z. Di, J. Ding, D. Wu, Z. Luan, Y. Zhu, Water Res. 39, 605 (2005)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support for this study by the Research Council of the University of Tehran through grants is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzaneh Shemirani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 464 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamshidi, P., Shemirani, F. Adsorption/desorption of acid violet-7 onto magnetic MnO2 prior to its quantification by UV–visible spectroscopy: optimized by fractional factorial design. Res Chem Intermed 46, 4403–4422 (2020). https://doi.org/10.1007/s11164-020-04211-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04211-x

Keywords

Navigation