Skip to main content
Log in

Investigation of controlled release properties and anticancer effect of folic acid conjugated magnetic core–shell nanoparticles as a dual responsive drug delivery system on A-549 and A-431 cancer cell lines

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Epirubicin loaded on magnetite-coated calcium ferrite conjugated folic acid (Fe3O4@CaFe2O4-FA@EPI) was synthesized and characterized using various techniques like SEM, EDX, FT-IR, XRD, TGA, BET, and VSM. Also, the therapeutic effects on A-549 and A-431 cancer cell lines and delivering ability of Fe3O4@CaFe2O4-FA@EPI for potential use as a system of targeted drug delivery in cancer therapy were investigated. The obtained results show that these hybrid nanoscale particles have a large capacity of adsorption for EPI (19.4 wt.%) and desirable drug loading performance (97.5%). The acetate buffer environment guides the drug release to a higher amount (99%), in comparison with the phosphate-buffered saline (28%). Also, the Fe3O4@CaFe2O4-FA@EPI nanohybrids in vitro cytotoxic activity versus A-549 (null folate receptor) and A-431 (positive folate receptor) cancer cell lines in group III (Fe3O4@EPI) investigations, show the higher cell cytotoxicity and apoptosis in A-549 cells compared to A-431 (p < 0.05). Moreover, in A-431 cells, the percent of cell cytotoxicity and cell death grew in the Fe3O4@CaFe2O4-FA@EPI group in comparison with the A-549 cell line (p < 0.05). The results illustrated the effects of Fe3O4@CaFe2O4-FA@EPI group on cytotoxicity and apoptosis of A-431 positive folate receptor cancer cells were almost two times greater than free EPI. Furthermore, obtained findings show that the Fe3O4@CaFe2O4-FA@EPI provides a specific growth inhibition of cancer cells through binding to receptors on the cell membrane and intracellular uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Prasad, U.P. Lambe, B. Brar, I. Shah, J. Manimegalai, K. Ranjan, R. Rao, S. Kumar, S. Mahant, S.K. Khurana, Biomed. Pharmacother. 97, 1521 (2018)

    CAS  PubMed  Google Scholar 

  2. F. Nemati, A. Elhampour, Res. Chem. Intermed. 42, 10 (2016)

    Google Scholar 

  3. L. Khanna, N. Verma, Mater. Lett. 128, 376 (2014)

    CAS  Google Scholar 

  4. Y. Patil, Y. Amitay, P. Ohana, H. Shmeeda, A. Gabizon, J. Control Release 225, 87 (2016)

    CAS  PubMed  Google Scholar 

  5. A.U. Buzdar, N.K. Ibrahim, D. Francis, D.J. Booser, E.S. Thomas, R.L. Theriault, L. Pusztai, M.C. Green, B.K. Arun, S.H. Giordano, J. Clin. Oncol. 23, 16 (2005)

    Google Scholar 

  6. N. Kandpal, N. Sah, R. Loshali, R. Joshi. J. Prasad. J. Sci. Ind. Res. 73, (2014)

  7. A. Debnath, A. Bera, K. Chattopadhyay, B. Saha, AIP Conf. Proc 1731, 050103 (2016)

    Google Scholar 

  8. W. Cheng, J. Nie, L. Xu, C. Liang, Y. Peng, G. Liu, T. Wang, L. Mei, L. Huang, X. Zeng, ACS Appl. Mater. Interfaces 9, 22 (2017)

    Google Scholar 

  9. S. Gatti, A. Agostini, U.C. Palmiero, C. Colombo, M. Peviani, A. Biffi, D. J. Nanotechnol. 29, 30 (2018)

    Google Scholar 

  10. S. Lee, J.A. Kwon, K.H. Park, C.M. Jin, J.B. Joo, I. Choi, Eur. J. Pharm. Biopharm. 131, 232 (2018)

    CAS  PubMed  Google Scholar 

  11. R. Foldbjerg, D.A. Dang, H. Autrup, Arch. Toxicol. 85, 7 (2011)

    Google Scholar 

  12. M. Ono, A. Hirata, T. Kometani, M. Miyagawa, S.-I. Ueda, H. Kinoshita, T. Fujii, M. Kuwano, Mol. Cancer. Ther. 3, 4 (2004)

    Google Scholar 

  13. K. Ghosh, K. Chandra, A.K. Ojha, S. Sarkar, S.S. Islam, Carbohydr. Res. 344, 5 (2009)

    Google Scholar 

  14. R.C. Borra, M.A. Lotufo, S.M. Gagioti, F.D.M. Barros, P.M. Andrade, Braz. Oral. Res. 23, 3 (2009)

    Google Scholar 

  15. S.M. Smith, M.B. Wunder, D.A. Norris, Y.G. Shellman, PLoS ONE 6, 11 (2011)

    Google Scholar 

  16. M. Kadyrov, C. Schmitz, S. Black, P. Kaufmann, B. Huppertz, Placenta 24, 5 (2003)

    Google Scholar 

  17. M. Aghazadeh, Mater. Lett. 211, 225 (2018)

    CAS  Google Scholar 

  18. R. Bilas, K. Sriram, P.U. Maheswari, K.M.S. Begum, Int. J. Biol. Macromol. 97, 513 (2017)

    CAS  PubMed  Google Scholar 

  19. H.B. Lakshmi, B. Madhu, M. Veerabhadraswamy, Int. J. Eng. Res. Adv. Tech. 3, 21 (2017)

    Google Scholar 

  20. D.R. Babu, K. Venkatesan, J. Crys. Growth. 468, 179 (2017)

    Google Scholar 

  21. Y. Zhu, C. Peng, Z.-F. Gao, H. Yang, W.-M. Liu, Z.-J. Wu, J. Environ. Chem. Eng. 6, 2 (2018)

    Google Scholar 

  22. N. Kumar, A. Kumar, S. Chandrasekaran, T.Y. Tseng, J. O. C. E. T. 6, 1 (2018)

    Google Scholar 

  23. B. Zamani-Ranjbar-Garmroodi, M.A. Nasseri, A. Allahresani, K. Hemmat, Res. Chem. Intermed. 45, 11 (2019)

    Google Scholar 

  24. M. Bagherzadeh, R. Kaveh, Photochem. Photobiol. 359, 11 (2018)

    CAS  Google Scholar 

  25. E. Farzad, H. Veisi, J. Ind. Eng. Chem. 60, 114 (2018)

    CAS  Google Scholar 

  26. P. Balasubramanian, R. Settu, S.-M. Chen, T.-W. Chen, G. Sharmila, J. Colloid Interface Sci. 524, 417 (2018)

    CAS  PubMed  Google Scholar 

  27. M. Rostami, M. Aghajanzadeh, M. Zamani, H.K. Manjili, H. Danafar, Res. Chem. Intermed. 44, 3 (2018)

    Google Scholar 

  28. N. Sulaiman, M. Ghazali, B. Majlis, J. Yunas, M. Razali, Bio-Med. Mater. Eng. 26, s1 (2015)

    Google Scholar 

  29. L. Khanna, N.K. Verma, Phys. B Condens. Matter 427, 68 (2013)

    CAS  Google Scholar 

  30. S. Xuan, X. Lv, C. Ding, K. Tang, G. Li, G. Pei, S. Wu, Steel. Res Int. 89, 5 (2018)

    Google Scholar 

  31. Y. You, H. Zhao, G.F. Vance, Colloids Surf. A 205, 3 (2002)

    Google Scholar 

  32. I. Clark, P.W. Dunne, R.L. Gomes, E. Lester, J. Colloid. Interface Sci. 504, 492 (2017)

    CAS  PubMed  Google Scholar 

  33. Q. Chen, J. Zheng, X. Yuan, J. Wang, L. Zhang, Mater. Sci. Eng. C. 82, 1 (2018)

    Google Scholar 

  34. Y. Salinas, C. Hoerhager, A. García-Fernández, M. Resmini, F.L. Sancenón, R.N. Matínez-Máñez, O. Brueggemann, ACS Appl. Mater. Interfaces 10, 34029 (2018)

    CAS  PubMed  Google Scholar 

  35. B. Balraj, N. Senthilkumar, C. Siva, R. Krithikadevi, A. Julie, I.V. Potheher, M. Arulmozhi, Res. Chem. Intermed. 43, 4 (2017)

    Google Scholar 

  36. M. Jayapriya, K. Premkumar, M. Arulmozhi, K. Karthikeyan, Res. Chem. Intermed. 4, 1 (2020)

    Google Scholar 

  37. Z. Izadiyan, K. Shameli, M. Miyake, S.Y. Teow, S.C. Peh, S.E. Mohamad, S.H. Taib, Mater. Sci. Eng. C. 1, 96 (2019)

    Google Scholar 

  38. A. Yassemi, S. Kashanian, H. Zhaleh, Pharm. Dev. Technol. 25(4), 397 (2020)

    CAS  PubMed  Google Scholar 

  39. N. Shahabadi, M. Razlansari, H. Zhaleh, K. Mansouri, Mater. Sci. Eng. C 1, 101 (2019)

    Google Scholar 

  40. S. Kamaraj, U.M. Palanisamy, M.S.B.K. Mohamed, A. Gangasalam, G.A. Maria, R. Kandasamy, Eur. J. Pharm. Sci. 116, 48 (2018)

    PubMed  Google Scholar 

  41. W. Lin, Y.-W. Huang, X.-D. Zhou, Y. Ma, Toxicol. Appl. Pharmacol. 217, 3 (2006)

    Google Scholar 

  42. F. Sambale, S. Wagner, F. Stahl, R. Khaydarov, T. Scheper, D. Bahnemann, J. Nanomater. 16, 1 (2015)

    Google Scholar 

Download references

Acknowledgements

The Razi University Research Center's financial support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahid Shahabadi.

Ethics declarations

Conflict of interest

The researchers declare they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahabadi, N., Razlansari, M., Khorshidi, A. et al. Investigation of controlled release properties and anticancer effect of folic acid conjugated magnetic core–shell nanoparticles as a dual responsive drug delivery system on A-549 and A-431 cancer cell lines. Res Chem Intermed 46, 4257–4278 (2020). https://doi.org/10.1007/s11164-020-04205-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04205-9

Keywords

Navigation