Skip to main content
Log in

Double stabilization of silver molecular clusters in thin films

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The evolution of spectral and luminescent properties of Ag-containing composite coatings prepared by liquid technique has been studied. Double stabilization allows forming thin oxide films containing luminescent small Agn (n < 5) molecular clusters using the liquid technique. These clusters are non-stable intermediate products during the formation of Ag nanoparticles from the ions and neutral atoms. It was found that small luminescent Agn molecular clusters (n < 5) formed in the solutions at the presence of polyvinylpyrrolidone (PVP) remain in PVP/metal nitrates composite coatings and in the calcined metal oxide coatings. Spatial separation of small Ag molecular clusters in the coatings by the oxide nanoparticles of ZnO and MgO prohibits silver clusters growth and non-luminescent silver nanoparticles formation and allows saving coatings’ luminescence properties during thermal treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X.-F. Zhang, Z.-G. Liu, W. Shen, S. Gurunathan, Int. J. Mol. Sci. 17(9), 1534 (2016)

    Article  PubMed Central  Google Scholar 

  2. Z. Cheng, S. Zhao, L. Han, Nanoscale 10, 6892 (2018)

    Article  CAS  PubMed  Google Scholar 

  3. B.J. Lawrie, R.F. Haglund Jr., R. Mu, Opt. Express 17(4), 2565 (2009)

    Article  CAS  PubMed  Google Scholar 

  4. P. Cheng, D. Li, Z. Yuan, P. Chen, D. Yang, Appl. Phys. Lett. 92, 041119-1-3 (2008)

    Google Scholar 

  5. D.S. Agafonova, E.V. Kolobkova, A.I. Ignatiev, N.V. Nikonorov, T.A. Shakhverdov, P.S. Shirshnev, A.I. Sidorov, V.N. Vasiliev, Opt. Eng. 54(11), 117107 (2015)

    Article  Google Scholar 

  6. O.V. Istomina, S.K. Evstropiev, E.V. Kolobkova, A.O. Trofimov, Opt. Spectr. 124(6), 774 (2018)

    Article  CAS  Google Scholar 

  7. V.D. Dubrovin, A.I. Ignatiev, N.V. Nikonorov, A.I. Sidorov, T.A. Shakhverdor, D.S. Agafonova, Opt. Mater. 36(4), 753 (2014)

    Article  CAS  Google Scholar 

  8. M. Rai, A. Yadav, A. Gade, Biotechnol. Adv. 27(1), 76 (2009)

    Article  CAS  PubMed  Google Scholar 

  9. P. Fageria, S. Gangopadhyay, S. Pande, RSC Adv. 4, 24962 (2014)

    Article  CAS  Google Scholar 

  10. M.V. Stolyarchuk, A.I. Sidorov, Opt. Spectr. 125(3), 305 (2018)

    Article  CAS  Google Scholar 

  11. G.A. Ozin, H. Huber, Inorg. Chem. 17(1), 155 (1978)

    Article  CAS  Google Scholar 

  12. E. Janata, A. Henglein, B.G. Ershov, J. Phys. Chem. 98, 10888 (1994)

    Article  CAS  Google Scholar 

  13. C. Petit, P. Lixon, M.-P. Pileni, J. Phys. Chem. 97, 12974 (1993)

    Article  CAS  Google Scholar 

  14. M. Pelton, Y. Tang, O.M. Bakr, F. Stellacci, J. Am. Chem. Soc. 134(29), 11856 (2012)

    Article  CAS  PubMed  Google Scholar 

  15. B.A. Ashenfelter, A. Desireddy, S.H. Yau, T. Goodson III, T.P. Bigioni, J. Phys. Chem. C. 119, 20728 (2015)

    Article  CAS  Google Scholar 

  16. H.S. Ramsay, M.M. Silverman, D. Simon, R.D. Oleschuk, K.G. Stamplecoskie, Nanoscale 11, 20522 (2019)

    Article  CAS  PubMed  Google Scholar 

  17. N. Cathcart, P. Mistry, C. Makra, B. Pietrobon, N. Coombs, M. Jelokhani-Niaraki, V. Kitaev, Langmuir 25(10), 5840 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. X.L. Guéve, C. Spies, N. Schneider-Daum, G. Jung, M. Scheneder, Nano Res. 5(6), 379 (2014)

    Article  Google Scholar 

  19. T. Yang, S. Dai, H. Tan, Y. Zong, Y. Liu, J. Chen, K. Zhang, P. Wu, S. Zhang, J. Xu, Y. Tian, J. Phys. Chem. C 123(30), 18638 (2019)

    Article  CAS  Google Scholar 

  20. X. Jia, J. Li, E. Wang, Chem. Commun. 50, 9565 (2014)

    Article  CAS  Google Scholar 

  21. Z. Luo, K. Zheng, J. Xie, Chem. Commun. 50, 5134 (2014)

    Google Scholar 

  22. D.K. Sahu, P. Sarkar, D. Singha, K. Sahu, RSC Adv. 9, 39405 (2019)

    Article  CAS  Google Scholar 

  23. S. Lecoultre, A. Rydlo, J. Buttet, C. Félix, S. Gilb, W. Harbich, J. Chem. Phys. 134, 184504 (2011)

    Article  CAS  PubMed  Google Scholar 

  24. M. Harb, F. Rabilloud, D. Simon, A. Rydlo, S. Lecoultre, F. Conus, V. Rodrigues, C. Félix, J. Chem. Phys. 129, 194108 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. H.-Ch. Weissker. Optical properties of noble metal clusters from Ab intio perspective, Klaus Wandert. Encyclopedia of Interfacial Chemistry, Elsevier, pp. 546–558, 2018, 9780128097397. Hal-02002264

  26. S.R. Gadre, S.D. Yeole, N. Sahu, Chem. Rev. 24, 12132 (2014)

    Article  Google Scholar 

  27. Y.M. Sgibnev, N.V. Nikonorov, A.I. Ignatiev, J. Lumin. 188, 172 (2017)

    Article  CAS  Google Scholar 

  28. D. Bharathimohan, K. Sreejith, C.S. Sunandana, Appl. Phys. B 89, 59 (2007)

    Article  CAS  Google Scholar 

  29. E.J. Guidelli, O. Baffa, D.R. Clarke, Sci. Rep. 5, 14004 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. B. Thongrom, P. Amornpitoksuk, S. Suwanboon, J. Baltusatis Korean J. Chem. Eng. 31(4), 587 (2014)

    Article  CAS  Google Scholar 

  31. S.K. Evstropiev, A.V. Karavaeva, K.V. Dukelskii, K.S. Evstropyev, N.V. Nikonorov, E.V. Kolobkova, Ceram. Int. 44(8), 9091 (2018)

    Article  CAS  Google Scholar 

  32. W. Cui, L. Wensheng, Y. Zhang, G. Lin, T. Wei, L. Jiang, Colloids Surf. A Physicochem. Eng. Asp. 358(1–3), 35 (2010)

    Article  CAS  Google Scholar 

  33. I. Pastoriza-Santoz, L.M. Liz-Marzán, Langmuir 18(7), 2888 (2002)

    Article  Google Scholar 

  34. S.K. Evstropiev, I.P. Soshnikov, E.V. Kolobkova, K.S. Evstropyev, N.V. Nikonorov, A.I. Khrebtov, K.V. Dukelskii, K.P. Kotlyar, K.V. Oreshkina, A.V. Nashekin, Opt. Mater. 82, 81 (2018)

    Article  CAS  Google Scholar 

  35. J. Mack, J.R. Bolton, J. Photochem. Photobiol. A: Chem. 128, 1 (1999)

    Article  CAS  Google Scholar 

  36. H. Wang, X. Qiao, J. Chen, X. Wang, S. Ding, Mater. Chem. Phys. 94, 449 (2005)

    Article  CAS  Google Scholar 

  37. C. Kan, W. Cai, C. Li, L. Zhang, J. Mater. Res. 20(7), 320 (2005)

    Article  CAS  Google Scholar 

  38. R.B.M. Schasfoort, A.J. Tudos, Handbook of Surface Plasmon Resonance (RSC Publishing, Cambridge, 2008)

    Book  Google Scholar 

  39. P.-Y. Silvert, R. Herrera-Urbina, K. Tekaia-Elhsissen, J. Mater. Chem. 7(2), 293 (1997)

    Article  CAS  Google Scholar 

  40. T. Huang, X.-H.N. Xu, J. Mater. Chem. 20, 9867 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The reported study was funded by Russian Science Foundation, according to the research Projects No. 19-19-00596 (Evstropiev SK) and No. 20-19-00559 (Nikonorov NV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Evstropiev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evstropiev, S.K., Nikonorov, N.V. & Saratovskii, A.S. Double stabilization of silver molecular clusters in thin films. Res Chem Intermed 46, 4033–4046 (2020). https://doi.org/10.1007/s11164-020-04189-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04189-6

Keywords

Navigation