Skip to main content
Log in

Novel biogenic silver nanoparticles used for antibacterial effect and catalytic degradation of contaminants

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The study reports a versatile, cost-efficient and ecofriendly protocol for the synthesis of biogenic silver nanoparticles (AgNPs) using the aqueous extracts of Quao Binh Chau, Stereospermum binhchauensis and Che Vang, Jasminum subtriplinerve and their application in antibacterial activity and catalysis. The AgNPs with varying morphology and physical properties have been optimized using the absorption measurements. The biogenic AgNPs have been characterized by Fourier transform infrared spectroscopy, UV–Vis spectroscopy, transmission electron microscopy, X-ray diffraction analysis, energy-dispersive X-ray spectroscopy and thermal behaviors. Stable crystalline AgNPs with average particle sizes of 20.0 nm and 8.0 nm were fabricated from aqueous extract of Quao Binh Chau and Che Vang, respectively. The phytochemicals from the extracts involved in reduction and stabilization of AgNPs are identified by FTIR spectra and thermal gravimetric analysis. Both the biosynthesized AgNPs show the potent antibacterial activity against four tested bacterial strains including Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Agrobacterium tumefaciens. High catalytic activity of the biogenic AgNPs in the degradation of toxic contaminants (4-nitrophenol and methyl orange) was observed. The antibacterial and catalytic activities are found to be size and phytochemical dependent. The antibacterial and catalytic activities of the biogenic nanoparticles would find applications in the biomedical and environmental fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  1. T.A.J.D. Souza, L.R.R. Souza, L.P. Franchi, Ecotoxicol. Environ. Saf. 171, 691 (2019)

    Google Scholar 

  2. P. Malik, T.K. Mukherjee, Int. J. Pharm. 553, 483 (2018)

    CAS  PubMed  Google Scholar 

  3. A. Loiseau, V. Asila, G. Boitel-Aullen, M. Lam, M. Salmain, S. Boujday, Biosensors (Basel) 9, 78 (2019)

    CAS  Google Scholar 

  4. N. Sahai, N. Ahmad, M. Gogoi, Curr. Pathobiol. Rep. 6, 219 (2018)

    CAS  Google Scholar 

  5. S.M. Mousavi, S.A. Hashemi, Y. Ghasemi, A. Atapour, A.M. Amani, A.S. Dashtaki, A. Babapoor, O. Arjmand, Artif. Cells Nanomed. Biotechnol. 46, S855 (2018)

    CAS  Google Scholar 

  6. M. Jayapriya, D. Dhanasekaran, M. Arulmozhi, E. Nandhakumar, N. Senthilkumar, K. Sureshkumar, Res. Chem. Intermediat. 45, 3617 (2019)

    CAS  Google Scholar 

  7. J. Singh, T. Dutta, K.H. Kim, M. Rawat, P. Samddar, P. Kumar, J. Nanobiotechnol. 16, 84 (2018)

    CAS  Google Scholar 

  8. W.K. Azira, W.M. Khalir, K. Shameli, M. Miyake, N.A. Othman, Res. Chem. Intermediat. 44, 7013 (2018)

    Google Scholar 

  9. S. Shah, S. Din, A.K. Rehmanullah, S.A. Shah, J. Polym. Environ. 26, 2323 (2018)

    CAS  Google Scholar 

  10. P. Khanna, A. Kaur, D. Goyal, J. Microbiol. Methods 163, 105656 (2019)

    CAS  PubMed  Google Scholar 

  11. X. Li, H. Xu, Z.S. Chen, G. Chen, J. Nanomater. 2011, 270974 (2011)

    Google Scholar 

  12. V. Patel, D. Berthold, P. Puranik, M. Gantar, Biotechnol. Rep. 5, 112 (2015)

    Google Scholar 

  13. T.D. Nguyen, T.T. Vo, C.H. Nguyen, V.D. Doan, C.H. Dang, J. Mol. Liq. 276, 927 (2019)

    CAS  Google Scholar 

  14. R. Arunachalam, S. Dhanasingh, B. Kalimuthu, M. Uthirappan, C. Rose, A.B. Mandal, Colloids Surf. B 94, 226 (2012)

    CAS  Google Scholar 

  15. A.J. Ruiz-Baltazar, S.Y. Reyes-López, M.L. Mondragón-Sánchez, M. Estevez, A.R. Hernández-Martinez, R. Perez, Results Phys. 11, 1142 (2018)

    Google Scholar 

  16. J.L. Lopez-Miranda, M.A.V. González, F. Mares-Briones, J.A. Cervantes-Chávez, R. Esparza, G. Rosas, R. Perez, Res. Chem. Intermed. 44, 7479 (2018)

    CAS  Google Scholar 

  17. J. Du, Z. Hu, Z. Yu, H. Li, J. Pan, D. Zhao, Y. Bai, Mater. Sci. Eng. C 102, 247 (2019)

    CAS  Google Scholar 

  18. L. Azeez, A. Lateef, S.A. Adebisi, Appl. Nanosci. 7, 59 (2017)

    CAS  Google Scholar 

  19. T. Monowar, M.S. Rahman, S.J. Bhore, G. Raju, K.V. Sathasivam, Molecules 23, 3220 (2018)

    PubMed Central  Google Scholar 

  20. V.S. Dang, Acta Phytotax. Geobot. 66, 91 (2015)

    Google Scholar 

  21. N.T.H. Huong, N.K.Q. Cua, T.V. Quy, C.Z. Ganzerac, H. Stuppner, J. Asian Nat. Prod. Res. 10, 1035 (2008)

    CAS  PubMed  Google Scholar 

  22. D.T. Mai, T.N. Ngo, N.T.L. Nguyen, Q.L. Ngo, N.P. Minh, T.D. Bui, V.S. Dang, C.L. Tran, N.K.T. Pham, N.M.A. Tran, T.P. Nguyen, Nat. Prod. Res. 33, 1 (2019)

    Google Scholar 

  23. D.H. Ngan, H.T.C. Hoai, L.M. Huong, P.E. Hansen, O. Vang, Nat. Prod. Res. 22, 942 (2008)

    CAS  PubMed  Google Scholar 

  24. T.D. Nguyen, C.H. Dang, D.T. Mai, Carbohydr. Polym. 197, 29 (2018)

    CAS  PubMed  Google Scholar 

  25. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Adv. Colloid Interface Sci. 209, 172 (2014)

    CAS  Google Scholar 

  26. B.K.N.N. Ghosh, J. Nanosci. Nanotechnol. 18, 3735 (2018)

    CAS  PubMed  Google Scholar 

  27. T.T. Vo, C.H. Dang, V.D. Doan, V.S. Dang, T.D. Nguyen, J. Inorg. Organomet. Polym. Mater. 29, 1 (2019)

    Google Scholar 

  28. L. Karimi, S. Zohoori, M.E. Yazdanshenas, J. Saudi. Chem. Soc. 18, 581 (2014)

    Google Scholar 

  29. Y. Deng, R. Zhao, Curr. Pollut. Rep. 1, 167 (2015)

    CAS  Google Scholar 

  30. T.M. Abdelghany, A.M.H. Al-Rajhi, M.A.A. Abboud, M.M. Alawlaqi, A.G. Magdah, E.A.M. Helmy, A.S. Mabrouk, BioNanoScience 8, 5 (2018)

    Google Scholar 

  31. T.T.N. Nguyen, T.T. Vo, B.N.H. Nguyen, D.T. Nguyen, V.S. Dang, C.H. Dang, T.D. Nguyen, Environ. Sci. Pollut. R. 25, 34247 (2018)

    CAS  Google Scholar 

  32. Y. Qin, Y. Liu, L. Yuan, H. Yong, J. Liu, Food Hydrocoll. 96, 102 (2019)

    CAS  Google Scholar 

  33. C.H. Dang, T.D. Nguyen, Waste Biomass Valoriz. 10, 2703 (2018)

    Google Scholar 

  34. T.T. Vo, T.T.N. Nguyen, T.T.T. Huynh, T.T.T. Vo, T.T.N. Nguyen, D.T. Nguyen, V.S. Dang, C.H. Dang, T.D. Nguyen, J. Nanomater. 2019, 8385935 (2019)

    Google Scholar 

  35. L.K. Ruddaraju, P.N.V.K. Pallela, S.V.N. Pammi, V.S. Padavala, V.R.M. Kolapalli, Mat. Sci. Semicond. Proc. 100, 301 (2019)

    CAS  Google Scholar 

  36. A.R. Araujo, J. Ramos-Jesus, T.M. Oliveira, A.M.A.D. Carvalho, P.H.M. Nunes, T.C. Daboit, A.P. Carvalho, M.F. Barroso, M.P. Almeida, A. Plácido, A. Rodrigues, C.C. Portugal, R. Socodato, J.B. Relvas, C. Delerue-Matos, D.A. Silva, P. Eaton, J.R.S.A. Leite, Ind. Crop Prod. 137, 52 (2019)

    Google Scholar 

  37. D.Y. Kim, R.G. Saratale, S. Shinde, A. Syed, F. Ameen, G. Ghodake, J. Clean. Prod. 172, 2910 (2018)

    CAS  Google Scholar 

  38. T.B. Devi, M. Ahmaruzzaman, Environ. Sci. Pollut. Res. 23, 17702 (2016)

    CAS  Google Scholar 

  39. T. Dodevska, I. Vasileva, P. Denev, D. Karashanova, B. Georgieva, D. Kovacheva, N. Yantcheva, A. Slavov, Mater. Chem. Phys. 231, 335 (2019)

    CAS  Google Scholar 

  40. S. Islam, B.S. Butola, A. Gupta, A. Roy, Sustain. Chem. Pharm. 12, 100135 (2019)

    Google Scholar 

  41. O. Erdogan, M. Abbak, G.M. Demirbolat, F. Birtekocak, M. Aksel, S. Pasa, O. Cevik, PLoS ONE 14, e0216496 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Y.L. Min, G.Q. He, Q.J. Xu, Y.C. Chen, J. Mater. Chem. A 2, 1294 (2014)

    CAS  Google Scholar 

  43. W.D. Pyrz, D.J. Buttrey, Langmuir 24, 11350 (2008)

    CAS  PubMed  Google Scholar 

  44. V. Cittrarasu, B. Balasubramanian, D. Kaliannan, S. Park, V. Maluventhan, T. Kaul, W.C. Liu, M. Arumugam, Artif. Cells Nanomed. Biotechnol. 47, 2424 (2019)

    CAS  Google Scholar 

  45. V.K. Vidhu, D. Philip, Micron 56, 54 (2014)

    CAS  PubMed  Google Scholar 

  46. F.U. Khan, Y. Chen, N.U. Khan, Z.U.H. Khan, A.U. Khan, A. Ahmad, K. Tahir, L. Wang, M.R. Khan, P. Wan, J. Photochem. Photobiol. B 164, 344 (2016)

    PubMed  Google Scholar 

  47. M. Gondwal, G.J.N. Pant, Int. J. Biomater. 2018, 6735426 (2018)

    PubMed  PubMed Central  Google Scholar 

  48. B. Ajitha, Y.A.K. Reddy, Y. Lee, M.J. Kim, C.W. Ahn, Appl. Organomet. Chem. 33, e4867 (2019)

    Google Scholar 

  49. S. Joseph, B. Mathew, J. Mol. Liq. 204, 184 (2015)

    CAS  Google Scholar 

  50. A. Rajan, V. Vilas, D. Philip, J. Mol. Liq. 207, 231 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Basic Science Research Fund of Tra Vinh University (No. 168/HD.HDKH-DHTV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh-Danh Nguyen.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2622 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.MT., Huynh, T.TT., Dang, CH. et al. Novel biogenic silver nanoparticles used for antibacterial effect and catalytic degradation of contaminants. Res Chem Intermed 46, 1975–1990 (2020). https://doi.org/10.1007/s11164-019-04075-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-04075-w

Keywords

Navigation