Skip to main content
Log in

PrCo1−xFexO3 perovskite powders for possible photocatalytic applications

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Mixed perovskites PrCo1−xFexO3 have been synthesized by the solgel citrate route with the following calcinations in air at 600–800 °C. The prepared samples have been studied using DTA–TG, XRD, FTIR and UV–Vis spectroscopy, and nitrogen low-temperature adsorption–desorption. Electronic structure and magnetic properties of the mixed praseodymium cobaltites–ferrites were calculated within the projector augmented wave method, implemented in the ABINIT software package. The prepared perovskites have been tested as photocatalysts of dyes degradation under visible illumination. It has been established that only the crystalline perovskite phase is photocatalytically active. The prepared materials are semiconductors with band gap within 1.7–2.6 eV and intense absorption of visible light. This fact as well as sufficiently high specific surface area and developed meso–macroporous structure ensures their increased photocatalytic activity. The most active in the PrCo1−xFexO3 series is the sample with Co/Fe = 1:9 due to the highest specific surface area, low value of the band gap, and higher deformation of orthorhombic perovskite structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Raveau, M.M. Seikh, Handbook of Magnetic Materials, vol. 23 (Elsevier, Amsterdam, 2015), p. 161

    Google Scholar 

  2. R.L. White, J. Appl. Phys. 40, 1061 (1969)

    CAS  Google Scholar 

  3. C. Sun, R. Hui, J. Roller, J. Solid State Electrochem. 14, 1125 (2010)

    CAS  Google Scholar 

  4. J.W. Fergus, Sens. Actuator B 123, 1169 (2007)

    CAS  Google Scholar 

  5. J.R. Mawdsley, T.R. Krause, Appl. Catal. A 334, 311 (2008)

    CAS  Google Scholar 

  6. A. Weidenkaff, R. Robert, M. Aguirre, L. Bocher, T. Lippert, S. Canulescu, Renew. Energy 33, 342 (2008)

    CAS  Google Scholar 

  7. Y. Tokunaga, N. Furukawa, H. Sakai, Y. Taguchi, T. Arima, Y. Tokura, Nat. Mater. 8, 558 (2009)

    CAS  PubMed  Google Scholar 

  8. P. Kanhere, Z. Chen, Molecules 19, 19995 (2014)

    PubMed  PubMed Central  Google Scholar 

  9. W. Wang, M.O. Tadé, Z. Shao, Chem. Soc. Rev. 44, 5371 (2015)

    CAS  PubMed  Google Scholar 

  10. S.N. Tijare, S. Bakardjieva, J. Subrt, M.V. Joshi, S.S. Rayalu, S. Hishita, N. Labhsetwar, J. Chem. Sci. 126, 517 (2014)

    CAS  Google Scholar 

  11. S.K. Megarajan, S. Rayalu, M. Nishibori, N. Labhsetwar, New J. Chem. 39, 2342 (2015)

    CAS  Google Scholar 

  12. J. Ding, X. Lu, H. Shu, J. Xie, H. Zhang, Mater. Sci. Eng. B 171, 31 (2010)

    CAS  Google Scholar 

  13. A. Sutka, M. Millers, M. Vanags, U. Joost, M. Maiorov, V. Kisand, R. Pärna, I. Juhnevica, Res. Chem. Intermed. 41, 9439 (2015)

    CAS  Google Scholar 

  14. M.J. Pawar, S.S. Turkar, Int. J. Adv. Sci. Tech. Res. 1, 79 (2012)

    Google Scholar 

  15. J.M. Hermann, Catal. Today 53, 115 (1999)

    Google Scholar 

  16. S. Upasen, P. Batocchi, F. Mauvy, A. Slodczyk, P. Colomban, Ceram. Int. 41, 14137 (2015)

    CAS  Google Scholar 

  17. S. Royer, F. Bérubé, S. Kaliaguine, Appl. Catal. A 282, 273 (2005)

    CAS  Google Scholar 

  18. S. Royer, D. Duprez, S. Kaliaguine, J. Catal. 234, 364 (2005)

    CAS  Google Scholar 

  19. Y. Wu, C. Dujardin, P. Granger, C. Tiseanu, S. Sandu, V. Kuncser, V.I. Parvulescu, J. Phys. Chem. C 117, 13989 (2013)

    CAS  Google Scholar 

  20. O. Pekinchak, L. Vasylechko, I. Lutsyuk, Ya. Vakhula, Yu. Prots, W. Carrillo-Cabrera, Nanoscale Res. Lett. 11, 75 (2016)

    PubMed  PubMed Central  Google Scholar 

  21. O. Pekinchak, DYu. Sugak, S.B. Ubizskii, Yu. Suhak, H. Fritze, L. Vasylechko, Acta Phys. Pol. A 133, 798 (2018)

    CAS  Google Scholar 

  22. L. Akselrud, Y. Grin, J. Appl. Cryst. 47, 803 (2014)

    CAS  Google Scholar 

  23. D. Rouquerol, C.W. Avnir, D.H. Fairbridge, J.M. Everett, N. Haynes, J.D.F. Pernicone, K.S.W. Ramsay, K.K. Sing, Unger. Pure Appl. Chem. 66, 1739 (1994)

    CAS  Google Scholar 

  24. G. Sangami, N. Dharmaraj, Spectrochim. Acta Part A 97, 847 (2012)

    CAS  Google Scholar 

  25. V.K. Gupta, R. Jain, A. Mittal, M. Mathur, S. Sikarwar, J. Colloid, Interface Sci. 309, 464 (2007)

    CAS  Google Scholar 

  26. M. Rauf, S. Ashraf, Chem. Eng. J. 151, 10 (2009)

    CAS  Google Scholar 

  27. K. Wieczorek-Ciurowa, A.J. Kozak, J. Therm. Anal. Calorim. 58, 647 (1999)

    CAS  Google Scholar 

  28. C. Ehrhardt, M. Gjikaj, W. Brockner, Thermochim. Acta 432, 36 (2005)

    CAS  Google Scholar 

  29. P. Melnikov, I.V. Arkhangelsky, V.A. Nascimento, L.C. de Oliveira, W.R. Guimaraes, L.Z. Zanoni, J. Therm. Anal. Calorim. 133, 929 (2018)

    CAS  Google Scholar 

  30. D. Wyrzykowski, E. Hebanowska, G. Nowak-Wiczk, M. Makowski, L. Chmurzynski, J. Therm. Anal. Calorim. 104, 731 (2011)

    CAS  Google Scholar 

  31. V.K. Sankaranarayanan, N.S. Gaybhiye, Thermochim. Acta 153, 337 (1989)

    CAS  Google Scholar 

  32. Ph Colomban, E. Bruneton, J. Non-Cryst. Solids 147–148, 201 (1992)

    Google Scholar 

  33. W.R. Parada, J.G. Cuaspuda, J.C. Castelló, Cienc. en Desarro. 8, 119 (2017)

    Google Scholar 

  34. O.B. Pavlovska, L.O. Vasylechko, I.V. Lutsyuk, N.M. Koval, Ya.A. Zhydachevskii, A. Pieniążek, Nanoscale Res. Lett. 12, 153 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. J. Xu, J. Liu, Z. Zhao, J. Zheng, G. Zhang, A. Duan, G. Jiang, Catal. Today 153, 136 (2010)

    CAS  Google Scholar 

  36. Y. Wei, H. Gui, Z. Zhao, J. Li, Y. Liu, S. Xin, X. Li, W. Xie, AIP Adv. 4, 127134 (2014)

    Google Scholar 

  37. E. García-López, G. Marcì, F. Puleo, V. La Parola, L.F. Liotta, Appl. Catal. B 178, 218 (2014)

    Google Scholar 

  38. C. Zhang, H. Hen, N. Wang, H. Chen, D. Kong, Ceram. Int. 39, 3685 (2013)

    CAS  Google Scholar 

  39. X. Liu, K. Sohlberg, Complex Met. Open Access J. 1, 103 (2014)

    Google Scholar 

  40. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Google Scholar 

  41. X. Gonze, B. Amadon, P.M. Anglade, J.M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, Ph Ghosez, M. Giantomassi, S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger, Comput. Phys. Commun. 180, 2582 (2009)

    CAS  Google Scholar 

  42. E. Tran, P. Blaha, K. Schwarz, P. Novak, Phys. Rev. B 74, 155108 (2006)

    Google Scholar 

  43. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B Condens. Matter. Mater. Phys. 57, 1505 (1998)

    CAS  Google Scholar 

  44. V.M. Shved, V.M. Hreb, L.O. Vasylechko, J. Nano- Electron. Phys. 11, 05032 (2019)

    Google Scholar 

  45. I. Sosnowska, P. Fische, J. Less-Common Met. 111, 109 (1985)

    CAS  Google Scholar 

  46. D.V. Karpinsky, I.O. Troyanchuk, K. Bärner, H. Szymczak, M. Tovar, J. Phys, Condens. Matter. 17, 7219 (2005)

    CAS  Google Scholar 

  47. K.R. Hebert, S.P. Albu, I. Paramasivam, P. Schmuki, Nat. Mater. 11, 162 (2012)

    CAS  Google Scholar 

  48. A. Karagoz, V. Craciun, G.B. Basim, ECS J. Solid State Sci. Technol. 4, 1 (2015)

    Google Scholar 

  49. H. Yang, J.X. Zhang, G.J. Lin, T. Xian, J.L. Jiang, Adv. Powder Technol. 24, 242 (2013)

    CAS  Google Scholar 

  50. E. Kapinus, T. Viktorova, T. Khalyavka, Theor. Exp. Chem. 45, 114 (2009)

    CAS  Google Scholar 

  51. S. Zhao, L. Wang, Y. Wang, X. Li, J. Phys. Chem. Solids 116, 43 (2018)

    Google Scholar 

  52. S. Song, L. Xu, Z. He, H. Ying, J. Chen, X. Xiao, B. Yan, J. Hazard. Mater. 152, 1301 (2008)

    CAS  PubMed  Google Scholar 

  53. M. Shui, L.H. Yue, Z.D. Xu, Acta Phys. Chim. Sin. 16, 459 (2000)

    CAS  Google Scholar 

  54. S. Silvestri, N. Stefanello, J. da Silveira Salla, E.L. Foletto, Res. Chem. Intermed. 45, 4299 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

The work was funded by the Ministry of Education and Science of Ukraine under project N 0118U000264 (DB/Feryt).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sydorchuk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sydorchuk, V., Lutsyuk, I., Shved, V. et al. PrCo1−xFexO3 perovskite powders for possible photocatalytic applications. Res Chem Intermed 46, 1909–1930 (2020). https://doi.org/10.1007/s11164-019-04071-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-04071-0

Keywords

Navigation