Skip to main content
Log in

WN/nitrogen-doped reduced graphite oxide hybrids for triiodide reduction in dye-sensitized solar cells

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The development of low-cost, environmental friendliness, outstanding catalytic activity, superior conductivity and good stability counter electrode (CE) catalyst in dye-sensitized solar cells (DSSCs) is important to promote the commercial application of DSSCs. Here, WN/nitrogen-doped reduced graphite oxide hybrids (WN/NrGO) had been synthesized by hydrothermal method followed by nitridation treatment, which used as CE catalysts for catalyzing I3 to I. The combined WN and nitrogen-doped reduced graphite oxide (NrGO) into WN/NrGO could effectively regulate the catalytic activity for the reduction of I3, accelerate the charge transfer at the interface, and then the synergistic effect between of them can be fully achieved. When the WN/NrGO served as the CE catalyst in DSSCs, the photoelectric conversion efficiency (PCE) of 7.42% has been obtained, compared to the conventional Pt-based DSSCs (7.71%). Meanwhile, as-prepared WN/NrGO exhibited higher PCE than that of the solo WN (6.19%) and NrGO (5.81%) in parallel. A series of electrochemical measures revealed that the WN/NrGO displayed the higher catalytic activity and charge transfer ability than that of the solo WN and NrGO, so the synthesized low-cost WN/NrGO have an potential to be used as the effectively CE catalysts for the replacement of the noble Pt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. O’Regan, M. Grätzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  2. S. Mathew, A.Y. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Nat. Chem. 6, 242 (2014)

    Article  CAS  Google Scholar 

  3. J.H. Wu, Z. Lan, J.M. Lin, M.L. Huang, Y.F. Huang, L.Q. Fan, G.G. Luo, Chem. Rev. 115, 2136 (2015)

    Article  CAS  Google Scholar 

  4. O. Wiranwetchayan, W. Promnopas, S. Choopun, P. Singjai, S. Thongtem, Res. Chem. Intermed. 43, 4339 (2017)

    Article  CAS  Google Scholar 

  5. S.S. Huang, Q.Q. He, W.L. Chen, J.T. Zai, Q.Q. Qiao, X.F. Qian, Nano Energy 15, 205 (2015)

    Article  CAS  Google Scholar 

  6. J.H. Ou, J. Xiang, J.X. Liu, L.C. Sun, ACS Appl. Mater. Interfaces 11, 14862 (2019)

    Article  CAS  Google Scholar 

  7. Y.D. Niu, X. Qian, C. Xu, H.Y. Liu, W.M. Wu, L.X. Hou, Chem. Eng. J. 357, 11 (2019)

    Article  CAS  Google Scholar 

  8. W.L. Lu, R. Jiang, X. Yin, L.Y. Wang, Nano Res. 12, 159 (2019)

    Article  CAS  Google Scholar 

  9. A. Kay, M. Grätzel, Sol. Energy Mater. Sol. Cells 44, 99 (1996)

    Article  CAS  Google Scholar 

  10. E. Olsen, G. Hagen, S.E. Lindquist, Sol. Energy Mater. Sol. Cells 63, 267 (2000)

    Article  CAS  Google Scholar 

  11. M.X. Wu, T.L. Ma, ChemSusChem 5, 1343 (2012)

    Article  CAS  Google Scholar 

  12. S.N. Yun, A. Hagfeldt, T.L. Ma, Adv. Mater. 26, 6210 (2014)

    Article  CAS  Google Scholar 

  13. M. Inagaki, Y. Yang, F.Y. Kang, Adv. Mater. 24, 2547 (2012)

    Article  CAS  Google Scholar 

  14. C.-S. Wu, T.-W. Chang, H.S. Teng, Y.-L. Lee, Energy 115, 513 (2016)

    Article  CAS  Google Scholar 

  15. J.W. Wan, G.J. Fang, H.J. Yin, X.F. Liu, D. Liu, M.T. Zhao, W.J. Ke, H. Tao, Z.Y. Tang, Adv. Mater. 26, 8101 (2014)

    Article  CAS  Google Scholar 

  16. X.X. Chen, Q.W. Tang, B.L. He, L. Lin, L.M. Yu, Angew. Chem. Int. Ed. 53, 10799 (2014)

    Article  CAS  Google Scholar 

  17. S.N. Yun, M.X. Wu, Y.D. Wang, J. Shi, X. Lin, A. Hagfeldt, T.L. Ma, ChemSusChem 6, 411 (2013)

    Article  CAS  Google Scholar 

  18. M.X. Wu, Q.Y. Zhang, J.Q. Xiao, C.Y. Ma, X. Lin, C.Y. Miao, Y.J. He, Y.R. Gao, A. Hagfeldt, T.L. Ma, J. Mater. Chem. 21, 10761 (2011)

    Article  CAS  Google Scholar 

  19. N. Xiong, S. Wang, Y. Xie, Q.M. Feng, X.Y. Wang, M.X. Li, Z.K. Xun, W. Zhou, K. Pan, Res. Chem. Intermed. 7, 4307 (2017)

    Google Scholar 

  20. X. Qian, H.Y. Liu, Y.X. Huang, Z.J. Ren, Y.T. Yu, C. Xu, L.X. Hou, J. Power Sources 412, 568 (2019)

    Article  CAS  Google Scholar 

  21. F. Gong, H. Wang, X. Xu, G. Zhou, Z.-S. Wang, J. Am. Chem. Soc. 134, 10953 (2012)

    Article  CAS  Google Scholar 

  22. C.-T. Lee, J.-D. Peng, C.-T. Li, Y.-L. Tsai, R. Vittal, K.-C. Ho, Nano Energy 10, 201 (2014)

    Article  CAS  Google Scholar 

  23. V. Murugadoss, N. Wang, S. Tadakamalla, B. Wang, Z.H. Guo, S. Angaiah, J. Mater. Chem. A 5, 14583 (2017)

    Article  CAS  Google Scholar 

  24. X.W. Wang, Y. Xie, B. Bateer, K. Pan, X.M. Zhang, J. Wu, H.G. Fu, ACS Sustain. Chem. Eng. 7, 2784 (2019)

    Article  CAS  Google Scholar 

  25. H.Q. Fang, C. Yu, T.L. Ma, J.S. Qiu, Chem. Commun. 50, 3328 (2014)

    Article  CAS  Google Scholar 

  26. X.T. Meng, C. Yu, X.D. Song, J. Iocozzia, J.F. Hong, M. Rager, H.L. Jin, S. Wang, L.L. Huang, J.S. Qiu, Z.Q. Lin, Angew. Chem. Int. Ed. 57, 4682 (2018)

    Article  CAS  Google Scholar 

  27. V. Harnchana, S. Chaiyachad, S. Pimanpang, C. Saiyasombat, P. Srepusharawoot, V. Amornkitbamrung, Sci. Rep. 9, 1494 (2019)

    Article  Google Scholar 

  28. C. Yu, Z.Q. Liu, X.T. Meng, B. Lu, D. Cui, J.S. Qiu, Nanoscale 8, 17458 (2016)

    Article  CAS  Google Scholar 

  29. L.G. Wei, P. Wang, Y.L. Yang, R.D. Luo, J.Q. Li, X.H. Gu, Z.S. Zhan, Y.L. Dong, W.N. Song, R.Q. Fan, J. Nanopart. Res. 20, 110 (2018)

    Article  Google Scholar 

  30. S.C. Hou, X. Cai, H.W. Wu, X. Yu, M. Peng, K. Yan, D.C. Zou, Energy Environ. Sci. 6, 3356 (2013)

    Article  CAS  Google Scholar 

  31. X.T. Meng, C. Yu, X.D. Song, Y. Liu, S.X. Liang, Z.Q. Liu, C. Hao, J.S. Qiu, Adv. Energy Mater. 5, 1500180 (2015)

    Article  Google Scholar 

  32. J. Balamurugan, G. Karthikeyan, T.D. Thanh, N.H. Kim, J.H. Lee, J. Power Sources 308, 149 (2016)

    Article  CAS  Google Scholar 

  33. G.-R. Li, F. Wang, Q.-W. Jiang, X.-P. Gao, P.-W. Shen, Angew. Chem. Int. Ed. 49, 3653 (2010)

    Article  CAS  Google Scholar 

  34. J. Balamurugan, T.D. Thanh, N.H. Kim, J.H. Lee, Adv. Mater. Interfaces 3, 1500348 (2016)

    Article  Google Scholar 

  35. L.T. Qu, Y. Liu, J.-B. Baek, L.M. Dai, ACS Nano 4, 1321 (2010)

    Article  CAS  Google Scholar 

  36. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P.C. Eklund, Nano Lett. 6, 2667 (2006)

    Article  CAS  Google Scholar 

  37. B. Yang, X.Q. Zuo, P. Chen, L. Zhou, X. Yang, H.J. Zhang, G. Li, M.Z. Wu, Y.Q. Ma, S.W. Jin, X.S. Chen, ACS Appl. Mater. Interfaces 7, 137 (2015)

    Article  CAS  Google Scholar 

  38. C.X. Cong, T. Yu, K. Sato, J.Z. Shang, R. Saito, G.F. Dresselhaus, M.S. Dresselhaus, ACS Nano 5, 8760 (2011)

    Article  CAS  Google Scholar 

  39. Y. Zhou, Q.L. Bao, L.A.L. Tang, Y.L. Zhong, K.P. Loh, Chem. Mater. 21, 2950 (2009)

    Article  CAS  Google Scholar 

  40. A.A. Arbab, A.A. Memon, I.A. Sahito, N. Mengal, K.C. Sun, M. Ali, S.H. Jeong, J. Mater. Chem. A 6, 8307 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Fundamental Research Founds for the Central Universities of China (3072019CF2507). We also thank Siyu Sui of Heilongjiang University for the experimental measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihong Qi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Sun, Q. & Qi, L. WN/nitrogen-doped reduced graphite oxide hybrids for triiodide reduction in dye-sensitized solar cells. Res Chem Intermed 46, 1705–1714 (2020). https://doi.org/10.1007/s11164-019-04057-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-04057-y

Keywords

Navigation