Skip to main content
Log in

High activity of Pt–Rh supported on C–ITO for ethanol oxidation in alkaline medium

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

PtRh/C–ITO electrocatalysts were prepared in a single-step method using H2PtCl6·6H2O and RhCl3·xH2O as metal sources, sodium borohydride as the reducing agent and a physical mixture of 85% Vulcan Carbon XC72 and 15% In2O3·SnO2 (indium tin oxide—ITO) as support. PtRh/C–ITO were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), cyclic voltammetry, chronoamperommetry, attenuated total reflectance, Fourier transform infrared spectroscopy and performance test on direct alkaline ethanol fuel cell. X-ray diffraction patterns for all PtRh/C–ITO indicated a shift in Pt (fcc) peaks, showing that Rh was incorporated into Pt lattice. Transmission electron microscopy for PtRh/C–ITO showed nanoparticles homogeneously distributed over the support with particles size between 3.0 and 4.0 nm. The XPS results for Pt70Rh30/C–ITO showed the presence of mixed oxidation states of Sn0 and SnO2 that could favor the oxidation of adsorbed intermediates by bifunctional mechanism. Pt90Rh10/C–ITO was more active in electrochemical studies, which could be associated with the C–C bond break. Experiments in direct alkaline ethanol fuel cells showed that the power density values obtained for Pt70Rh30/C–ITO and Pt90Rh10/C–ITO were higher than Pt/C, indicating the beneficial effect of Rh addition to Pt and the use of C–ITO support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Zhu, K. Tu, L. Huang, X. Qu, J. Zhang, H. Liao, Z. Zhou, Y. Jiang, S. Sun, Electrochim. Acta 292, 208 (2018)

    Article  CAS  Google Scholar 

  2. K. Bergamaski, E.R. Gonzalez, F.C. Nart, Electrochim. Acta 53, 4396e4406 (2008)

    Article  Google Scholar 

  3. Y.S. Kim, S.H. Nam, H.-S. Shim, H.-J. Ahn, M. Anand, W.B. Kim, Electrochem. Commun. 10, 1016e1019 (2008)

    Google Scholar 

  4. F. Kadirgan, S. Beyhan, T. Atilan, Int. J. Hydrog. Energy 34, 4312e4320 (2009)

    Google Scholar 

  5. A. Kowal, S.L. Gojkovic, K.S. Lee, P. Olszewski, Y.E. Sung, Electrochem. Commun. 11, 724e727 (2009)

    Article  Google Scholar 

  6. T.S. Almeida, L.M. Palma, C. Morais, K.B. Kokoh, A.R. De Andrade, J. Electrochem. Soc. 160, F965eF971 (2013)

    Article  Google Scholar 

  7. M. Li, W.P. Zhou, N.S. Marinkovic, K. Sasaki, R.R. Adzic, Electrochim. Acta 104, 454 (2013)

    Article  CAS  Google Scholar 

  8. Y. Matsuura, S. Seino, T. Okazaki, T. Akita, T. Nakagawa, T.A. Yamamoto, Rad. Phys. Chem. 122, 9 (2016)

    Article  CAS  Google Scholar 

  9. A. Kowal, M. Li, M. Shao, K. Sasaki, M.B. Vukmirovic, J. Zhang, N.S. Marinkovic, P. Liu, A.I. Frenkel, R.R. Adzic, Nat. Mater. 8, 325 (2009)

    Article  CAS  Google Scholar 

  10. E.H. Fontes, R.M. Piasentin, J.M.S. Ayoub, J.C.M. da Silva, M.H.M.T. Assumpção, E.V. Spinacé, A.O. Neto, R.F.B. de Souza, Mater. Renew. Sustain. Energy 4, 3 (2015)

    Article  Google Scholar 

  11. E.H. Fontes, S.G. da Silva, E.V. Spinace, A.O. Neto, R.F.B. de Souza, Electrocatalysis 7, 297 (2016)

    Article  CAS  Google Scholar 

  12. K. Liu, W. Wang, P. Guo, J. Ye, Y. Wang, P. Li, Z. Lyu, Y. Geng, M. Liu, S. Xie, Adv. Funct. Mater. 29, 1806300 (2019)

    Article  Google Scholar 

  13. S.Y. Shen, T.S. Zhao, J.B. Xu, Int. J. Hydrog. Energy 35, 12911e12917 (2010)

    Google Scholar 

  14. P. Wang, Y. Wen, S. Yin, N. Wang, P.K. Shen, Int. J. Hydrog. Energy 42, 24689e24696 (2017)

    Google Scholar 

  15. S. Yin, P. Wang, J. Lu, Y. Wen, L. Luo, J. Key, N. Wang, P.K. Shen, Int. J. Hydrog. Energy 42, 22805e22813 (2017)

    Google Scholar 

  16. R.S. Henrique, R.F.B. De Souza, J.C.M. Silva, J.M.S. Ayoub, R.M. Piasentin, M. Linardi, E.V. Spinacé, M.C. Santos, A.O. Neto, Int. J. Electrochem. Sci. 7, 2036 (2012)

    CAS  Google Scholar 

  17. J. Parrondo, R. Santhanam, F. Mijangos, B. Rambabu, Int. J. Electrochem. Sci. 5, 1342 (2010)

    CAS  Google Scholar 

  18. E.V. Spinacé, R.R. Dias, M. Brandalise, M. Linardi, A.O. Neto, Ionics 16, 16 (2010)

    Article  Google Scholar 

  19. A.O. Neto, M. Linardi, D.M. dos Anjos, G. Tremiliosi-Filho, E.V. Spinace, J. Appl. Electrochem. 39, 1153 (2009)

    Article  Google Scholar 

  20. A.O. Neto, M. Brandalise, R.R. Dias, J.M.S. Ayoub, A.C. Silva, J.C. Penteado, M. Linardi, E.V. Spinace, Int. J. Hydrog. Energy 35, 9177 (2010)

    Article  Google Scholar 

  21. D. Chu, J. Wang, S. Wang, L. Zha, J. He, Y. Hou, Y. Yan, H. Lin, Z. Tian, Catal. Commun. 10, 955 (2009)

    Article  CAS  Google Scholar 

  22. G.L. Cordeiro, E.F. de Camargo, M.C.L. Santos, C.V. Pereira, V. Ussui, N.B. de Lima, A.O. Neto, D.R.R. Lazar, Int. J. Electrochem. Sci. 13, 6388 (2018)

    Article  CAS  Google Scholar 

  23. E.S.V. Neto, M.A. Gomes, G.R. Salazar-Banda, K.I.B. Eguiluz, Int. J. Hydrog. Energy 43, 1788e188 (2018)

    Google Scholar 

  24. C.V. Pereira, E.H. Fontes, J. Nandenha, M.H.M.T. Assumpção, A.O. Neto, Int. J. Electrochem. Sci. 13, 10587 (2018)

    Article  CAS  Google Scholar 

  25. E.H. Fontes, C.E.D. Ramos, J. Nandenha, R.M. Piasentin, A.O. Neto, R. Landers, Int. J. Hydrog. Energy 44, 937e951 (2019)

    Article  Google Scholar 

  26. J.F. Moulder, J. Chastain, Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data (Physical Electronics Division, Perkin-Elmer Corporation, Waltham, 1992)

    Google Scholar 

  27. G.S. Pawley, J. Appl. Crystallogr. 14(DEC), 357 (1981)

    Article  CAS  Google Scholar 

  28. M. Wojdyr, J. Appl. Crystallogr. 43, 1126 (2010)

    Article  CAS  Google Scholar 

  29. D.T. Clark, T. Fok, G.G. Roberts, R.W. Sykes, Thin Solid Films 70(2), 261 (1980)

    Article  CAS  Google Scholar 

  30. J. Bai, X. Xiao, Y.-Y. Xue, J.-X. Jiang, J.-H. Zeng, X.-F. Li, Yu. Chen, ACS Appl. Mater. Interface 10, 19755 (2018)

    Article  CAS  Google Scholar 

  31. L. Fang, J. He, S. Saipanya, X. Huang, Int. J. Electrochem. Sci. 10, 5350 (2015)

    CAS  Google Scholar 

  32. X. Fang, L. Wang, P.K. Shen, G. Cui, C. Bianchini, J. Power Sour. 195(5), 1375 (2010)

    Article  CAS  Google Scholar 

  33. A.N. Geraldes, D.F. Da Silva, E.S. Pino, J.C.M. Da Silva, R.F.B. De Souza, P. Hammer, E.V. Spinacé, A.O. Neto, M. Linardi, M.C. Dos Santos, Electrochim. Acta 111, 455 (2013)

    Article  CAS  Google Scholar 

  34. Z.-Y. Zhou, Q. Wang, J.-L. Lin, N. Tian, S.-G. Sun, Electrochim. Acta 55(27), 7995 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank FAPESP (2014/09087-4, 2014/50279-4, 2017/11937-4) and CNPq (300816/2016-2) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Neto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carmargo, V.F., Fontes, E.H., Nandenha, J. et al. High activity of Pt–Rh supported on C–ITO for ethanol oxidation in alkaline medium. Res Chem Intermed 46, 1555–1570 (2020). https://doi.org/10.1007/s11164-019-04050-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-04050-5

Keywords

Navigation