Skip to main content
Log in

Facile protic hydration of acetonitrile to protonated acetamide at oxygen mediated by chloroauric acid: insights from experimental and calculations

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Chemical transformations such as nitrile hydration or carbon–oxygen bond formation reactions under gentle conditions are important in the pharmaceutical industry because of the presence of potentially delicate functional groups. We present a non-catalytic hydration reaction of acetonitrile to the corresponding protonated acetamide gold(III) salt [CH3(OH)NH2]AuCl4 under ambient conditions in water using chloroauric acid H[AuCl4] for the first time. ATR-FTIR, Raman and 1H and 13C NMR spectroscopic data in addition to X-ray crystallography supported the isolation of protonated acetamide stabilized with [AuCl4] anion. The protonation of N–C=O fragment of acetamide, O- versus N-protonation aptitude, was validated experimentally and theoretically. The X-ray crystal structure of the acetamide salt [CH3C(OH)NH2]AuCl4 in the triclinic Pī space group suggested the enolic form. However, the reaction of gold(III) trichloride AuCl3 with acetonitrile in water in the absence of a proton source formed the gold(I)/gold(III) salt [Au(CH3CN)2]AuCl4 without hydration as shown in X-ray structure in the monoclinic P21/c space group. Mapping of HOMO–LUMO energy gap using frontier molecular orbital theory and MESP surfaces of OH and NH conformers of acetamide from DFT calculations clearly shows subsequent changes in their profiles with the change in their protonation states. An energy gap of 56.4 kcal/mol in the optimized energies of OH and NH conformers of acetamide along with computed HOMO–LUMO energy difference represents the relative stability of OH conformer compared to NH conformer, thus leading to the conclusion that OH protonation site is more likely to exist in the acetamide structure as compared to the NH protonation state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Zabicky, The Chemistry of Amides (Interscience Published, London, 1970)

    Google Scholar 

  2. A. Greenberg, C.M. Breneman, J.F. Liebman, The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science (Wiley-Interscience, Hoboken, NJ, 2000)

    Google Scholar 

  3. J.H. Jones, in Comprehensive Organic Chemistry, vol. 2, Book ed. D. H. R. Barton and W. D. Ollis, Series ed. I. O. Sutherland, Pergamon Press, Oxford (1979)

  4. M.M. Green, H.A. Wittcoff, Organic Chemistry Principles and Industrial Practice (Wiley, Weinheim, 2003)

    Google Scholar 

  5. T. Nagasawa, H. Yamada, Trends Biotechnol. 7, 153 (1989)

    Article  CAS  Google Scholar 

  6. M. Kobayashi, T. Nagasawa, H. Yamada, Trends Biotechnol. 10, 402 (1992)

    Article  CAS  Google Scholar 

  7. M.N. Kopylovich, A.J. Pombeiro, Coord. Chem. Rev. 255, 339 (2011)

    Article  CAS  Google Scholar 

  8. A.W. Parkins, Platinum Met. Rev. 40, 169 (1996)

    CAS  Google Scholar 

  9. S. Rao, R.C. Holz, Biochemistry 47, 12057 (2008)

    Article  CAS  Google Scholar 

  10. S.N. Greene, N.G. Richards, Inorg. Chem. 45, 17 (2006)

    Article  CAS  Google Scholar 

  11. S.P. Nolan, Acc. Chem. Res. 44, 91 (2011)

    Article  CAS  Google Scholar 

  12. J. Li, G. Tang, Y. Wang, Y. Wang, Z. Li, H. Li, New J. Chem. 40, 358 (2016)

    Article  CAS  Google Scholar 

  13. S. Keshipour, A. Shaabani, Res. Chem. Intermed. 41, 5071 (2015)

    Article  CAS  Google Scholar 

  14. M. Liler, J. Chem. Soc. Perkin Trans. 2, 816 (1972)

    Article  Google Scholar 

  15. R. Szostak, J. Aube, M. Szostak, Chem. Commun. 51, 6395 (2015)

    Article  CAS  Google Scholar 

  16. A.T. Overton, A.A. Mohamed, Inorg. Chem. 51, 5500 (2012)

    Article  CAS  Google Scholar 

  17. A.S. Hashmi, D.F. Toste, Modern Gold Catalyzed Synthesis (Wiley, Weinheim, 2012)

    Book  Google Scholar 

  18. A.A. Mohamed, Gold Bull. 44, 71 (2011)

    Article  Google Scholar 

  19. SMART V 4.043 Software for the CCD Detector System, Bruker Analytical X-ray Systems, Madison, WI (1995)

  20. SAINT V 4.035 Software for the CCD Detector System, Bruker Analytical X-ray Systems, Madison, WI (1995)

  21. SADABS. Program for absorption corrections using Siemens CCD based on the method of Robert Blessing, R.H. Blessing, Acta Cryst. A 51, 33 (1995)

  22. G.M. Scheldrick, SHELXS-97, Program for the Solution of Crystal Structure, University of Göttingen, Germany (1997)

  23. SHELXTL 5.03 (PC-Version), Program Library for Structure Solution and Molecular Graphics; Bruker Analytical X-ray Systems, Madison, WI (1995)

  24. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian 09, Revision A.02 (Gaussian, Inc., Wallingford CT, 2016)

    Google Scholar 

  25. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  CAS  Google Scholar 

  26. K. Raghavachari, G.W. Trucks, J. Chem. Phys. 91, 1062 (1989)

    Article  Google Scholar 

  27. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, Gaussian 09, Revision A. 02 (Gaussian Inc., Wallingford, CT, 2009)

    Google Scholar 

  28. P. Pan, S.A. Wood, Geochim. Cosmochim. Acta 55, 2365 (1991)

    Article  CAS  Google Scholar 

  29. T. Steiner, Chem. Commun. 4, 313 (1999)

    Article  Google Scholar 

  30. N.N. Nurakhmetov, R.A. Omarova, K.K. Ospanov, Koord. Khim. 28, 290 (2002)

    Article  Google Scholar 

  31. J. Axhausen, C. Ritter, K. Lux, A. Kornath, Z. Anorg, Allg. Chem. 639, 65 (2013)

    Article  CAS  Google Scholar 

  32. X.U. Rui-Bo, X.U. Xing-You, W. Ming-Yan, Y. Xu-Jie, W. Xin, L. La-De, M. Wei-Xing, Chin. J. Struc. Chem. 703 (2009)

  33. J.N. Moorthy, N. Singhal, J. Org. Chem. 70, 1926 (2005)

    Article  CAS  Google Scholar 

  34. R.A. Potts, D.L. Gaj, W.F. Schneider, N.S. Dean, J.W. Kampf, J.P. Oliver, Polyhedron 10, 1631 (1991)

    Article  CAS  Google Scholar 

  35. W.R. Fawcett, G. Liu, T.E. Kessler, J. Phys. Chem. 97, 9293 (1993)

    Article  CAS  Google Scholar 

  36. H. Willner, J. Schaebs, G. Hwang, F. Mistry, R. Jones, J. Trotter, F. Aubke, J. Am. Chem. Soc. 114, 8972 (1992)

    Article  CAS  Google Scholar 

  37. R.D. Swartz, M.K. Coggins, W. Kaminsky, J.A. Kovacs, J. Am. Chem. Soc. 133, 3954 (2011)

    Article  CAS  Google Scholar 

  38. M. Liler, J. Chem. Soc. D 115 (1971)

  39. K.H. Hopmann, J.D. Guo, F. Himo, Inorg. Chem. 46, 4850 (2007)

    Article  CAS  Google Scholar 

  40. B. Yilmaz, H. Saracoglu, N. Calişkan, I. Yilmaz, A. Cukurovali, J. Chem. Cryst. 42, 897 (2012)

    Article  CAS  Google Scholar 

  41. M.J. Dewar, J. Mol. Struct. Theochem 200, 301 (1989)

    Article  Google Scholar 

  42. K. Nam, J. Gao, D.M. York, RNA 14, 1501 (2008)

    Article  CAS  Google Scholar 

  43. F. Dehez, E. Pebay-Peyroula, C. Chipot, J. Am. Chem. Soc. 130, 12725 (2008)

    Article  CAS  Google Scholar 

  44. S.J. Cho, C. Cui, J.Y. Lee, J.K. Park, S.B. Suh, J. Park, B.H. Kim, K.S. Kim, J. Org. Chem. 1997(62), 4068 (1997)

    Article  Google Scholar 

  45. C.C. Wu, J.C. Jiang, I. Hahndorf, C. Chaudhuri, Y.T. Lee, H.C. Chang, J. Phys. Chem. A 104, 9556 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AAM acknowledges the University of Sharjah financial support of the competitive Grants 160-2142-029-P, 150-2142-017-P and 180-2142-059-P, Organometallic Research Group Grant RISE-046-2016 and Functionalized Nanomaterials Synthesis Lab Grant 151-0039.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahreen Arooj or Ahmed A. Mohamed.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehadi, I., Abla, F., Wakefield, B. et al. Facile protic hydration of acetonitrile to protonated acetamide at oxygen mediated by chloroauric acid: insights from experimental and calculations. Res Chem Intermed 46, 593–607 (2020). https://doi.org/10.1007/s11164-019-03979-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03979-x

Keywords

Navigation