Skip to main content
Log in

Magnetic biochar derived from sewage sludge of concentrated natural rubber latex (CNRL) for the removal of Al3+ and Cu2+ ions from wastewater

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In order to reduce sewage sludge of concentrated natural rubber latex (CNRL) and transform it into a valuable material for efficient removal of Al3+ and Cu2+ ions from wastewater, magnetic biochar was prepared. In this work, sewage sludge from CNRL was pyrolyzed at various temperatures (300–700 °C) to assess the effects of pyrolysis temperature on the efficiency of magnetic biochar in removing Al3+ and Cu2+ ions from an aqueous medium. Effect of the chemical composition of sewage sludge on the biochar characteristic was evaluated. Sewage sludge is mainly organic matter. The mineral elements silicon (Si), phosphorus (P), sulfur (S) and calcium (Ca) were also observed in the sewage sludge. With increasing pyrolysis temperature, the contents of P and potassium (K) increased. The inorganic metals chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni) and lead (Pb) were present in small quantities. Pyrolysis temperatures 400–500 °C provided good quality magnetic biochar, while with the higher 700 °C pyrolysis temperature, specific surface area and pore volume decreased. The prepared biochar had combined meso- and macro-porous structure. Isotherms of Type II were indicating multilayer adsorption on porous biochar. The pseudo-second-order kinetic models described well Al3+ and Cu2+ adsorption onto magnetic biochar. The leaching test of magnetic biochar shows the releasing of K and Zinc (Zn) which can effect on the sorption of Al3+ and Cu2+. The binding mechanism between magnetic biochar and Al3+/Cu2+ involved surface complexation, ion exchange and cation‒π interaction.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BET:

Brunauer–Emmett–Teller

BS:

Biochar from sewage sludge

CNRL:

Concentrated natural rubber latex

Co:

Initial dye concentration (mg/L)

Ce:

Equilibrium concentration of dye (mg/L)

q e :

Sorbed dye amount per gram of sorbent at equilibrium (mg/g)

q e,cal :

Calculated amount of dye sorbed per gram of sorbent at equilibrium (mg/g)

q e,exp :

Experimental amount of dye sorbed per gram of sorbent at equilibrium (mg/g)

q t :

Sorbed dye amount per gram of sorbent at time t (mg/g)

k 1 :

Pseudo-first-order rate constant (1/min)

k 2 :

Pseudo-second-order rate constant (g/mg min)

MBS:

Magnetic biochar from sewage sludge

R 2 :

Correlation coefficient

SSE:

The sum of squares error

t :

Time (min)

References

  1. Q. Yang, Z. Li, X. Lu, Q. Duan, L. Huang, J. Bi, Sci. Total Environ. 642, 690 (2018)

    CAS  PubMed  Google Scholar 

  2. H.-S. Kim, Y.-M. Um, M.-K. Shin, H.-J. Park, J.-D. Lee, J.-Y. Kim, H.-M. Gwak, J.-H. Hyeon, J.-Y. Son, K.-S. Kim, R. Sachan, U. De, Y.-J. Kang, B.-M. Lee, Toxicol. Lett. 229, S103 (2014)

    Google Scholar 

  3. B.L. Abidemi, O.A. James, A.T. Oluwatosin, O.J. Akinropo, U.D. Oraeloka, A.E. Racheal, Int. J. Chem. Biomol. Sci. 4, 69 (2018)

    CAS  Google Scholar 

  4. D. Maity, T. Govindaraju, Chem. Commun. 46, 4499 (2010)

    CAS  Google Scholar 

  5. M. Parhoudeh, S. Inaloo, M. Zahmatkeshan, Z. Seratishirazi, S. Haghbin, Iran. J. Child Neurol. 12, 66 (2018)

    PubMed  PubMed Central  Google Scholar 

  6. V. Desai, S.G. Kaler, Am. J. Clin. Nutr. 88, 855S (2008)

    CAS  PubMed  Google Scholar 

  7. M.I. Inyang, B. Gao, Y. Yao, Y. Xue, A. Zimmerman, A. Mosa, P. Pullammanappallil, Y.S. Ok, X. Cao, Crit. Rev. Environ. Sci. Technol. 46, 406 (2016)

    CAS  Google Scholar 

  8. P. Lodeiro, Á. Gudiña, L. Herrero, R. Herrero, M.E. Sastre de Vicente, J. Hazard. Mater. 178, 861 (2010)

    CAS  PubMed  Google Scholar 

  9. K.W. Jung, S.Y. Lee, J.W. Choi, Y.J. Lee, Chem. Eng. J. 369, 529 (2019)

    CAS  Google Scholar 

  10. T. Huang, L. Zhou, L. Liu, M. Xia, Waste Manag. 75, 226 (2018)

    CAS  PubMed  Google Scholar 

  11. D. Krishna Veni, P. Kannan, T.N. Jebakumar Immanuel Edison, A. Senthilkumar, Waste Manag. 68, 752 (2017)

    CAS  PubMed  Google Scholar 

  12. K. Phoungthong, H. Zhang, L.M. Shao, P.J. He, J. Mater. Cycles Waste Manag. 20, 2089 (2018)

    CAS  Google Scholar 

  13. M.A. Sanchez-Monedero, M.L. Cayuela, A. Roig, K. Jindo, C. Mondini, N. Bolan, Bioresour. Technol. 247, 1155 (2018)

    CAS  PubMed  Google Scholar 

  14. L. Li, D. Zou, Z. Xiao, X. Zeng, L. Zhang, L. Jiang, A. Wang, D. Ge, G. Zhang, F. Liu, J. Clean. Prod. 210, 1324 (2019)

    CAS  Google Scholar 

  15. K.M. Poo, E.B. Son, J.S. Chang, X. Ren, Y.J. Choi, K.J. Chae, J. Environ. Manag. 206, 364 (2018)

    CAS  Google Scholar 

  16. S.H. Ho, Y. di Chen, Z. kai Yang, D. Nagarajan, J.S. Chang, N.Q. Ren, Bioresour. Technol. 246, 142 (2017)

    CAS  PubMed  Google Scholar 

  17. N.A. Qambrani, M.M. Rahman, S. Won, S. Shim, C. Ra, Renew. Sustain. Energy Rev. 79, 255 (2017)

    CAS  Google Scholar 

  18. F.M. Pellera, A. Giannis, D. Kalderis, K. Anastasiadou, R. Stegmann, J.Y. Wang, E. Gidarakos, J. Environ. Manag. 96, 35 (2012)

    CAS  Google Scholar 

  19. T. Qian, Q. Yang, D.C.F. Jun, F. Dong, Y. Zhou, Chem. Eng. J. 359, 1573 (2019)

    CAS  Google Scholar 

  20. X. Chen, G. Chen, L. Chen, Y. Chen, J. Lehmann, M.B. McBride, A.G. Hay, Bioresour. Technol. 102, 8877 (2011)

    CAS  PubMed  Google Scholar 

  21. M. Idrees, S. Batool, T. Kalsoom, S. Yasmeen, A. Kalsoom, S. Raina, Q. Zhuang, J. Kong, J. Environ. Manag. 213, 109 (2018)

    CAS  Google Scholar 

  22. N. Bombuwala Dewage, A.S. Liyanage, C.U. Pittman, D. Mohan, T. Mlsna, Bioresour. Technol. 263, 258 (2018)

    CAS  PubMed  Google Scholar 

  23. Y. Chen, B. Wang, J. Xin, P. Sun, D. Wu, Ecotoxicol. Environ. Saf. 164, 440 (2018)

    CAS  PubMed  Google Scholar 

  24. S.A. Baig, J. Zhu, N. Muhammad, T. Sheng, X. Xu, Biomass Bioenergy 71, 299 (2014)

    CAS  Google Scholar 

  25. C. Sun, T. Chen, Q. Huang, J. Wang, S. Lu, J. Yan, Environ. Sci. Pollut. Res. 26, 8902 (2019)

    CAS  Google Scholar 

  26. P. Alam, K. Ahmade, Spec. Issue Int. J. Sustain. Dev. Green Econ. 2, 165 (2013)

    Google Scholar 

  27. D. Pokhrel, T. Viraraghavan, Waste Manag. 25, 555 (2005)

    CAS  PubMed  Google Scholar 

  28. M. Kacprzak, E. Neczaj, K. Fijałkowski, A. Grobelak, A. Grosser, M. Worwag, A. Rorat, H. Brattebo, Å. Almås, B.R. Singh, Environ. Res. 156, 39 (2017)

    CAS  PubMed  Google Scholar 

  29. A.R. Pendashteh, F. Asghari Haji, N. Chaibakhsh, M. Yazdi, M. Pendashteh, J. Mater. Environ. Sci. 8, 4015 (2017)

    CAS  Google Scholar 

  30. D. Tanikawa, T. Watari, T.C. Mai, M. Fukuda, K. Syutsubo, N.B. Nguyen, T. Yamaguchi, Environ (Technol, United Kingdom, 2018)

    Google Scholar 

  31. K. Vijayaraghavan, D. Ahmad, A.Y.A. Yazid, Desalination 219, 214 (2008)

    CAS  Google Scholar 

  32. K. Saritpongteeraka, S. Chaiprapat, Bioresour. Technol. 99, 8987 (2008)

    CAS  PubMed  Google Scholar 

  33. L. Tang, J. Yu, Y. Pang, G. Zeng, Y. Deng, J. Wang, X. Ren, S. Ye, B. Peng, H. Feng, Chem. Eng. J. 336, 160 (2018)

    CAS  Google Scholar 

  34. H. Yuan, T. Lu, Y. Wang, Y. Chen, T. Lei, Geoderma 267, 17 (2016)

    CAS  Google Scholar 

  35. S.N. Guilhen, O. Mašek, N. Ortiz, J.C. Izidoro, D.A. Fungaro, Biomass Bioenergy 122, 381 (2019)

    CAS  Google Scholar 

  36. T. Chen, Y. Zhang, H. Wang, W. Lu, Z. Zhou, Y. Zhang, L. Ren, Bioresour. Technol. 164, 47 (2014)

    CAS  PubMed  Google Scholar 

  37. D. Kołodyńska, R. Wnetrzak, J.J. Leahy, M.H.B. Hayes, W. Kwapiński, Z. Hubicki, Chem. Eng. J. 197, 295 (2012)

    Google Scholar 

  38. D. Kołodyńska, J. Bąk, Sep. Sci. Technol. 53, 1045 (2018)

    Google Scholar 

  39. J. Hoslett, H. Ghazal, D. Ahmad, H. Jouhara, Sci. Total Environ. 673, 777 (2019)

    CAS  PubMed  Google Scholar 

  40. H. Wang, Y. Liu, J. Ifthikar, L. Shi, A. Khan, Z. Chen, Z. Chen, Bioresour. Technol. 256, 269 (2018)

    CAS  PubMed  Google Scholar 

  41. H. Xu, X. Zhang, Y. Zhang, Environ. Technol. 39, 1470 (2018)

    CAS  PubMed  Google Scholar 

  42. M.A. Mahmoud, M.M. El-Halwany, J. Chromatograp. Sep. Tech. 5, 238 (2014)

    Google Scholar 

  43. M.A. Mahmoud, Beni-Suef Univ. J. Basic Appl. Sci. 4, 142 (2015)

    Google Scholar 

  44. J.P. Simonin, Chem. Eng. J. 300, 254 (2016)

    CAS  Google Scholar 

  45. E. Agrafioti, G. Bouras, D. Kalderis, E. Diamadopoulos, J. Anal. Appl. Pyrolysis 101, 72 (2013)

    CAS  Google Scholar 

  46. A. Bogusz, P. Oleszczuk, R. Dobrowolski, Environ. Geochem. Health (2017). https://doi.org/10.1007/s10653-017-0036-1

    Article  PubMed  PubMed Central  Google Scholar 

  47. C. Adam, B. Peplinski, M. Michaelis, G. Kley, F.G. Simon, Waste Manag. 29, 1122 (2009)

    CAS  PubMed  Google Scholar 

  48. A. Trubetskaya, P.A. Jensen, A.D. Jensen, M. Steibel, H. Spliethoff, P. Glarborg, F.H. Larsen, Biomass Bioenerg. 86, 76 (2016)

    CAS  Google Scholar 

  49. M.K. Hossain, V. Strezov Vladimir, K.Y. Chan, A. Ziolkowski, P.F. Nelson, J. Environ. Manag. 92, 223 (2011)

    CAS  Google Scholar 

  50. M. Essandoh, B. Kunwar, C.U. Pittman, D. Mohan, T. Mlsna, Chem. Eng. J. 265, 219 (2015)

    CAS  Google Scholar 

  51. T. Liu, B. Liu, W. Zhang, Polish J. Environ. Stud. 23, 271 (2014)

    CAS  Google Scholar 

  52. S. Fan, H. Li, Y. Wang, Z. Wang, J. Tang, J. Tang, X. Li, Res. Chem. Intermed. 44, 135 (2018)

    CAS  Google Scholar 

  53. J. Rouquerol, D. Avnir, C.W. Fairbridge, K.K. Unger, Pure Appl. Chem. 66, 1739 (1994)

    CAS  Google Scholar 

  54. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 9 (2015)

    Google Scholar 

  55. X.D. Song, X.Y. Xue, D.Z. Chen, P.J. He, X.H. Dai, Chemosphere 109, 213 (2014)

    CAS  PubMed  Google Scholar 

  56. A. Dobermann, T.H. Fairhurst, International Rice Research Institute and Potash and Phosphate Institute, Los Baños (Philippines), Singapore, 2000)

    Google Scholar 

  57. Y.S. Kang, S. Risbud, J.F. Rabolt, P. Stroeve, Chem. Mater. 8, 2209 (1996)

    CAS  Google Scholar 

  58. A.L. Willis, N.J. Turro, S. O’Brien, Chem. Mater. 17, 5970 (2005)

    CAS  Google Scholar 

  59. Q. Zhao, S. Zhang, X. Zhang, L. Lei, W. Ma, C. Ma, L. Song, J. Chen, B. Pan, B. Xing, Environ. Sci. Technol. 51, 13659 (2017)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from the Faculty of Environmental Management, Prince of Songkla University (No. ENV6103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thitipone Suwunwong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2798 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phoungthong, K., Suwunwong, T. Magnetic biochar derived from sewage sludge of concentrated natural rubber latex (CNRL) for the removal of Al3+ and Cu2+ ions from wastewater. Res Chem Intermed 46, 385–407 (2020). https://doi.org/10.1007/s11164-019-03956-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03956-4

Keywords

Navigation