Skip to main content

Advertisement

Log in

Regeneration of the exhausted mesoporous Cu/SBA-15-[N] for simultaneous adsorption–oxidation of hydrogen sulfide and phosphine

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Previous studies showed that Cu/SBA-15-[N] had an excellent simultaneous adsorption–oxidation performance of hydrogen sulfide (H2S) and hydrogen phosphide (PH3), but the regeneration of deactivated Cu/SBA-15-[N] is still a difficult problem. In this work, acid pickling treatment (Rm-A), water washing (Ram-W), calcination (Rm-C) and acid pickling after calcining (Rm-CA) methods were used to study the regeneration performance of the deactivated Cu/SBA-15-[N]. The results showed that the most effective method was Rm-CA. Under optimal regeneration conditions (calcination temperature = 450 °C, HNO3 mass fraction = 13%), the sulfur capacity (23.73 mgS/g) and phosphorus capacity (100.49 mgP/g) of regenerated Cu/SBA-15-[N] were close to the fresh Cu/SBA-15-[N] (47.38 mgS/g, 136.42 mgP/g). The in situ IR indicated that the surface products of the sorbent were mainly in the form of oxides after calcination, these substances are transformed into the corresponding active components under the action of nitric acid. BET, XRD and TGA results indicated that the regeneration process did not destroy the deactivated Cu/SBA-15-[N] structure, but could change the surface of the group composition. The results of XPS reveal the copper content in different samples. After 3 times regeneration, the sulfur capacity and the phosphorus capacity of regenerated Cu/SBA-15-[N] could reach to 20.67 mgS/g and 88.43 mgP/g, which indicated that the Rm-CA method had good stability for the recovery of adsorption activity. This study provided an effective regeneration method that could also reduce the environmental hazards of deactivated Cu/SBA-15-[N].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K.A. Brenneman, R.A. James, E.A. Gross, D.C. Dorman, Toxicol. Pathol. 28, 326 (2000)

    Article  CAS  Google Scholar 

  2. D.C. Dorman, Toxicol. Sci. 65, 18 (2002)

    Article  CAS  Google Scholar 

  3. S. Gullane, O. Hamdaoui, Desalin. Water Treat. 3994, 1 (2015)

    Google Scholar 

  4. J. Saiz, E. Bringas, I. Ortiz, Ind. Eng. Chem. Res. 53, 18928 (2014)

    Article  CAS  Google Scholar 

  5. S. Garg, V.C. Srivastava, S. Singh, T.K. Mandal, Int. J. Chem. React. Eng. 13, 437 (2015)

    Article  CAS  Google Scholar 

  6. H. Yan, W. Chen, G. Liao, X. Li, S. Ma, L. Li, Sep. Purif. Technol. 159, 1 (2016)

    Article  CAS  Google Scholar 

  7. S. Srivastava, P. Mohanty, J.K. Parikh, A.K. Dalai, S.S. Amritphale, A.K. Khare, Cuihua Xuebao/Chin. J. Catal. 36, 933 (2015)

    Article  CAS  Google Scholar 

  8. X. Duan, W. Liu, L. Yue, W. Fu, M.N. Ha, J. Li, G. Lu, Dalt. Trans. 44, 17381 (2015)

    Article  CAS  Google Scholar 

  9. E.I. Basaldella, J.C. Tara, G.A. Armenta, M.E.P. Iglesias, J. Porous Mater. 14, 273 (2007)

    Article  CAS  Google Scholar 

  10. B. Levasseur, A.M. Ebrahim, T.J. Bandosz, J. Colloid Interface Sci. 377, 347 (2012)

    Article  CAS  Google Scholar 

  11. S. Li, K. Li, J. Hao, P. Ning, L. Tang, X. Sun, Chem. Eng. J. 302, 69 (2016)

    Article  CAS  Google Scholar 

  12. T.C. Drage, A. Arenillas, K.M. Smith, C.E. Snape, Microporous Mesoporous Mater. 116, 504 (2008)

    Article  CAS  Google Scholar 

  13. X. Song, S. Li, K. Li, Microporous Mesoporous Mater. 2017, S1387181117306571 (2017)

    Google Scholar 

  14. F. Salvador, N. Martin-Sanchez, R. Sanchez-Hernandez, M.J. Sanchez-Montero, C. Izquierdo, Microporous Mesoporous Mater. 202, 259 (2015)

    Article  CAS  Google Scholar 

  15. M. Mureddu, I. Ferino, E. Rombi, M.G. Cutrufello, P. Deiana, A. Ardu, A. Musinu, G. Piccaluga, C. Cannas, Fuel 102, 691 (2012)

    Article  CAS  Google Scholar 

  16. L. Wu, F. Ye, D. Lei D, Pet. Sci. (2018)

  17. S.Y. Jung, S.J. Lee, T.J. Lee, Catal. Today 111(3–4), 217 (2006)

    Article  CAS  Google Scholar 

  18. S. Lata, P.K. Singh, S.R. Samadder, Int. J. Environ. Sci. Technol. 12, 1461 (2015)

    Article  CAS  Google Scholar 

  19. Y. Peng, J. Li, X. Huang, X. Li, W. Su, X. Sun, D. Wang, J. Hao, Environ. Sci. Technol. 48, 4515 (2014)

    Article  CAS  Google Scholar 

  20. D. Zhao, Science 279, 548 (1998)

    Article  CAS  Google Scholar 

  21. R. Zubrzycki, T. Ressler, Microporous Mesoporous Mater. 214, 8 (2015)

    Article  CAS  Google Scholar 

  22. C. Pirez, J.C. Morin, J.C. Manayil, A.F. Lee, K. Wilson, Microporous Mesoporous Mater. 271, 196 (2018)

    Article  CAS  Google Scholar 

  23. M. Harisekhar, V. Pavan, S. Shanthi, J. Chem. Technol. Biotechnol. 90(10), 1906 (2015)

    Article  CAS  Google Scholar 

  24. S. Karthikeyan, M.P. Pachamuthu, M.A. Isaacs, Appl. Catal. B 199, 323 (2016)

    Article  CAS  Google Scholar 

  25. W. Shen, D. Mao, Z. Luo, RSC Adv. 7(44), 27689 (2017)

    Article  CAS  Google Scholar 

  26. L. Wang, J.K. Yao, Z. Wang, H.J. Jiao, J. Qi, X.J. Yong, D.H. Liu, Plasma Sci. Technol. 20(10), 101001 (2018)

    Article  Google Scholar 

  27. E. Da, A. Sayari, Desalination 277(1), 54 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (41807373, 21667015, and 51708266), and National Key R&D Program of China (2018YFC0213400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chi Wang or Ping Ning.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Li, K., Li, S. et al. Regeneration of the exhausted mesoporous Cu/SBA-15-[N] for simultaneous adsorption–oxidation of hydrogen sulfide and phosphine. Res Chem Intermed 46, 329–346 (2020). https://doi.org/10.1007/s11164-019-03953-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03953-7

Keywords

Navigation