Skip to main content
Log in

Synthesis, characterization and investigation of photocatalytic activity of ZnFe2O4@MnO–GO and ZnFe2O4@MnO–rGO nanocomposites for degradation of dye Congo red from wastewater under visible light irradiation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Magnetic ZnFe2O4@MnO–graphene oxide and ZnFe2O4@MnO–reduced graphene oxide nanocomposites were prepared via a facile co-precipitation and hydrothermal methods and characterized by X-ray powder diffraction, diffuse reflectance UV–Vis spectroscopy, photoluminescence (PL) spectra, Transmission electron microscopy, field emission scanning electron microscopy, Fourier transform infrared spectroscopy, vibrating sample magnetometry techniques and Bruner–Emmett–Teller (BET). The ZnFe2O4@MnO, ZnFe2O4@MnO–GO and ZnFe2O4@MnO–rGO nanoparticles were found to have a size of 20–40 nm and were spread out on the graphene oxide nanosheets and reduced graphene oxide nanosheets. Magnetic studies demonstrated that the ZnFe2O4@MnO–graphene oxide and ZnFe2O4@MnO–reduced graphene oxide nanocomposites can be easily separated from the solution by an external magnetic field. The photocatalytic degradation of Congo red dye (CR) was evaluated based on the removal of CR in aqueous solution in 35 min of visible light irradiation. The photocatalytic activity was affected by the structural and optical properties as well as the surface area of the samples. Compared with pure ZnFe2O4@MnO and ZnFe2O4@MnO–reduced graphene oxide nanocomposite, the ZnFe2O4@MnO–graphene oxide nanocomposite displayed a high photocatalytic activity on the photodegradation of Congo red. The prepared ZnFe2O4@MnO–graphene oxide nanocomposite can be potentially applied as a visible light responsive catalyst and magnetically separable photocatalyst and thus as a powerful separation tool for solving water pollution problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. M. Batool, M.Z. Qureshi, F. Hashmi, N. Mehboob, A.S. Shah, Indones. J. Chem. 19(3), (2019)

    Article  CAS  Google Scholar 

  2. R.S. Das, S.K. Warkhade, A. Kumar, A.V. Wankhade, Res. Chem. Intermed. 45, 1 (2019)

    Article  Google Scholar 

  3. G.M. Walker, L.R. Weatherley, Water Res. 31(8), 2093 (1997)

    Article  CAS  Google Scholar 

  4. B. Acemioğlu, J. Colloid Interface Sci. 274(2), 371 (2004)

    Article  Google Scholar 

  5. E.S. Agorku, A.T. Kuvarega, B.B. Mamba, A.C. Pandey, A.K. Mishra, J. Rare Earths 33(5), 498 (2015)

    Article  CAS  Google Scholar 

  6. S.O. Oppong, W.W. Anku, S.K. Shukla, P.P. Govender, Res. Chem. Intermed. 43(1), 481 (2017)

    Article  CAS  Google Scholar 

  7. P. Bakhtkhosh, A. Mehrizad, J. Mol. Liq. 240, 65 (2017)

    Article  CAS  Google Scholar 

  8. F. Tran, P. Blaha, Phys. Rev. Lett. 102(22), 226401 (2009)

    Article  Google Scholar 

  9. X. Liu, C. Chen, Y. Zhao, B. Jia, J. Nanomater. 2013, 1 (2013)

  10. M.M.A. Sinthiya, K. Ramamurthi, S. Mathuri, T. Manimozhi, N. Kumaresan, M.M. Margoni, P.C. Karthika, Int. J. Chem. Tech. Res. 7, 2144 (2015)

    CAS  Google Scholar 

  11. M. Gurumoorthy, K. Parasuraman, M. Anbarasu, K. Balamurugan, Nano Vis. 5, 63 (2015)

    Google Scholar 

  12. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, ACS Nano 4(1), 380 (2009)

    Article  Google Scholar 

  13. L. Sun, J. Li, C. Wang, S. Li, Y. Lai, H. Chen, C. Lin, J. Hazard. Mater. 171(1–3), 1045 (2009)

    Article  CAS  Google Scholar 

  14. H. Huang, D. Li, Q. Lin, W. Zhang, Y. Shao, Y. Chen, X. Fu, Environ. Sci. Technol. 43(11), 4164 (2009)

    Article  CAS  Google Scholar 

  15. L. Huang, F. Peng, H. Wang, H. Yu, Z. Li, Catal. Commun. 10(14), 1839 (2009)

    Article  CAS  Google Scholar 

  16. R.S. Das, S.K. Warkhade, A. Kumar, A.V. Res, Chem. Intermed. 45, 1 (2019)

    Article  Google Scholar 

  17. V.K. Gupta, T. Eren, N. Atar, M. Lütfi Yola, C. Parlak, H. Karimi-Maleh, J. Mol. Liq. 208, 122 (2015)

    Article  Google Scholar 

  18. E.S. Agorku, A.C. Pandey, B.B. Mamba, A.K. Mishra, Mater. Today Proc. 2(7), 3909 (2015)

    Article  Google Scholar 

  19. M. Mzoughi, W.W. Anku, S.O. Oppong, S.K. Shukla, E.S. Agorku, P.P. Govender, Adv. Mater. Lett. 7(12), 946 (2016)

    Article  CAS  Google Scholar 

  20. S.B. Narde, R.B. Lanjewar, S.M. Gadegone, M.R. Lanjewar, Der Pharma Chem. 9(7), 115 (2017)

    CAS  Google Scholar 

  21. F. Ciesielczyk, W. Szczekocka, K. Siwińska-stefańska, A. Piasecki, Open Chem. 15, 7 (2017)

    Article  CAS  Google Scholar 

  22. A. Thakur, S. Kumar, V.S. Rangra, Synthesis of reduced graphene oxide (rGO) via chemical reduction. in AIP Conference Proceedings, vol. 1661, no. 1, p. 080032 (2015)

  23. C. Suwanchawalit, V. Somjit, Dig. J. Nanomater. Biostruct. 10, 769 (2015)

    Google Scholar 

  24. B. Aslibeiki, P. Kameli, H. Salamati, J. Nanoparticle Res. 1–12, 15 (2013)

    Google Scholar 

  25. F.Y. Ban, S.R. Majid, N.M. Huang, H.N. Lim, Int. J. Electrochem. Sci. 7(5), 4345 (2012)

    CAS  Google Scholar 

  26. V. Loryuenyong, K. Totepvimarn, P. Eimburanapravat, W. Boonchompoo, A. Buasri, Adv. Mater. Sci. Eng. 2013, 1 (2013)

  27. K. Krishnamoorthy, G.-S. Kim, S.J. Kim, Ultrason. Sonochem. 20, 644 (2013)

    Article  CAS  Google Scholar 

  28. M.G. Naseri, E.B. Saion, Crystalization in spinel ferrite nanoparticles. In Advances in Crystallization Processes. IntechOpen (2012)

  29. P. Sathishkumar, R.V. Mangalaraja, S. Anandan, M. Ashokkumar, Chem. Eng. J. 220, 302 (2013)

    Article  CAS  Google Scholar 

  30. H. Guo, J. Chen, W. Weng, Q. Wang, S. Li, Chem. Eng. J. 239, 192 (2014)

    Article  CAS  Google Scholar 

  31. K. Woan, G. Pyrgiotakis, W. Sigmund, Adv. Mater. 21(21), 2233 (2009)

    Article  CAS  Google Scholar 

  32. R. Leary, A. Westwood, Carbon 49(3), 741 (2011)

    Article  CAS  Google Scholar 

  33. P.V. Kamat, M. Gevaert, K. Vinodgopal, J. Phys. Chem. B 101(22), 4422 (1997)

    Article  CAS  Google Scholar 

  34. W. Wang, P. Serp, P. Kalck, J.L. Faria, J. Mol. Catal. A: Chem. 235(1–2), 194 (2005)

    Article  CAS  Google Scholar 

  35. Y. Zhang, N. Zhang, Z.R. Tang, Y.J. Xu, ACS Nano 6(11), 9777 (2012)

    Article  CAS  Google Scholar 

  36. S.O.B. Oppong, W.W. Anku, S.K. Shukla, P.P. Govender, Res. Chem. Intermed. 43, 481 (2017)

    Article  CAS  Google Scholar 

  37. R. Karthik, J.V. Kumar, S.-M. Chen, P.S. Kumar, V. Selvam, V. Muthuraj, Sci. Rep. 7, 7254 (2017)

    Article  CAS  Google Scholar 

  38. R. Arunadevi, B. Kavitha, M. Rajarajan, A. Suganthi, A. Jeyamurugan, Surfaces Interfaces 10, 32 (2018)

    Article  CAS  Google Scholar 

  39. D. Wang, X. Li, J. Chen, X. Tao, Chem. Eng. J. 198, 547 (2012)

    Article  Google Scholar 

  40. K. Ullah, L. Zhu, Z.D. Meng, S. Ye, Q. Sun, W.C. Oh, Chem. Eng. J. 231, 76 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank science and research Branch, Islamic Azad University Tehran for supporting this study and Iran Nanotechnology Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirabdullah Seyed Sadjadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamani, A., Sadjadi, M.S., Mahjoub, A. et al. Synthesis, characterization and investigation of photocatalytic activity of ZnFe2O4@MnO–GO and ZnFe2O4@MnO–rGO nanocomposites for degradation of dye Congo red from wastewater under visible light irradiation. Res Chem Intermed 46, 33–61 (2020). https://doi.org/10.1007/s11164-019-03934-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03934-w

Keywords

Navigation