Skip to main content
Log in

UV–Vis spectroscopy and desorption/ionization mass spectrometry as the tools for investigation of adsorbed dye photodegradation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The photodegradation of the cationic dyes methylene blue, acridine yellow and acridine orange adsorbed on TiO2, TiO2/SiO2, SiO2 and Ag/SiO2 mesoporous films has been studied by electronic spectroscopy and laser desorption/ionization mass-spectrometry methods. Qualitative difference of peak intensity distribution for cation M+ and its reduced forms [M + H] and [M + 2H]+ has been detected in the laser desorption/ionization mass spectra of the dye adsorbed on the three film types. The results point out the sensitivity of the laser desorption/ionization mass spectra parameters to specific features of the dye cation adsorption on films of different compositions and photocatalytic activity. Characteristic dependencies of mass spectra intensities upon the duration of UV irradiation have been obtained for dyes adsorbed on the catalytically active films. Some products of the dye photo-destruction have been identified, and it has been shown that photo-catalytic activity decreased in the order TiO2 > SiO2/TiO2 > SiO2. In the presence of titania, photobleaching of adsorbed dyes occurs faster in comparison with this process in the presence of SiO2 and leads to the full discoloration and degradation of adsorbed dye molecules. Efficient photodegradation of acridine dyes occurs through the following steps: 1-N-demethylation (deamination for AY); 2-photodimerization; 3-photodegradation. It is shown that both the rise of Ag nanoparticle concentration on the surface of mesoporous silica films and the enlargement of the nanoparticles’ size from 3 to 6–12 nm intensified methylene blue desorption/ionization. The efficiency of mesoporous nanosized TiO2, SiO2/TiO2, SiO2 and Ag/SiO2 films as substrates for laser desorption/ionization mass-spectrometry method has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Gratzel, Nature 395, 583 (1998)

    Article  CAS  Google Scholar 

  2. A.M. Amata, A. Arquesa, F. Galindob, M.A. Mirandac, L. Santos-Juanesa, R.F. Verchera, R. Vicentea, Appl. Catal. B 73, 220 (1997)

    Article  CAS  Google Scholar 

  3. V.P.S. Pereira, P.K.D.D.P. Pitigala, P.V.V. Jayaweera, K.M.P. Bandaranayake, K. Tennakone, J. Phys. Chem. B 107, 13758 (2010)

    Article  CAS  Google Scholar 

  4. R. Mosurkal, L. Hoke, S.A. Fossey, L.A. Samuelson, J. Kumar, D. Waller, J. Macromol. Sci. Pure Appl. Chem. 43, 1907 (2006)

    Article  CAS  Google Scholar 

  5. A.K. Jana, J. Photochem. Photobiol. A Chem. 132, 1 (2000)

    Article  CAS  Google Scholar 

  6. A.K. Jana, B.B. Bhowmik, J. Photochem. Photobiol. A Chem. 122, 53 (1999)

    Article  CAS  Google Scholar 

  7. T. Wu, G. Liu, J. Zhao, H. Hidaka, N. Serpone, J. Phys. Chem. 102, 5845 (1998)

    Article  CAS  Google Scholar 

  8. Yu. Gnatyuk, N. Smirnova, A. Eremenko, V. Ilyin, J. Adsorpt. Sci. Technol. 23, 497 (2005)

    Article  CAS  Google Scholar 

  9. G.V. Krylova, YuI Gnatyuk, N.P. Smirnova, A.M. Eremenko, V.M. Gunko, J. Sol–Gel. Sci. Technol. 50, 216 (2009)

    Article  CAS  Google Scholar 

  10. G.V. Krylova, A.M. Eremenko, N.P. Smirnova, S. Yustis, Theor. Éxp. Chem. 41, 100 (2005)

    Google Scholar 

  11. D.A. Makarov, N.A. Kuznetsova, O.L. Kaliya, Zhurnal Fizicheskoi Khimii 80, 336 (2006)

    Google Scholar 

  12. G. Starukh, S. Toscani, S. Boursicot, L. Spanhel, Z. für Phys. Chem. 221, 349 (2007)

    Article  CAS  Google Scholar 

  13. F.B. Li, X.Z. Li, Appl. Catal. A 228, 15 (2002)

    Article  CAS  Google Scholar 

  14. S. Horikoshi, H. Hidaka, N. Serpone, J. Photochem. Photobiol. A Chem. 153, 185 (2002)

    Article  CAS  Google Scholar 

  15. Ying Ma, Jian-ian Yao, J. Photochem. Photobiol. 116, 167 (1998)

    Article  CAS  Google Scholar 

  16. A. Mills, J.S. Wang, J. Photochem. Photobiol. A: Chem. 127, 123 (1999)

    Article  CAS  Google Scholar 

  17. H. Gnaser, M.R. Savina, W.F. Calaway, C.E. Tripa, I.V. Veryovkin, M.J. Pellin, Int. J. Mass Spectrom. 245, 61 (2005)

    Article  CAS  Google Scholar 

  18. H. Gnaser, A. Orendorz, C. Ziegler, E. Rowlett, W. Bock, Appl. Surf. Sci. 252, 6996 (2006)

    Article  CAS  Google Scholar 

  19. O. Linnik, E. Manuilov, S. Snegir, N. Smirnova, A. Eremenko, J. Adv. Oxid. Technol. 12, 265 (2009)

    CAS  Google Scholar 

  20. T.A. Fesenko, N.I. Surovtseva, V.A. Pokrovsky, A.M. Eremenko, N.P. Smirnova, Mass Spectrom. 4, 289 (2007). (in Russian)

    CAS  Google Scholar 

  21. N.I. Surovtseva, A.M. Eremenko, N.P. Smirnova, V.A. Pokrovsky, T.A. Fesenko, G.N. Starukh, Theor. Exp. Chem. 43, 220 (2007)

    Article  Google Scholar 

  22. N.I. Surovtseva, N.P. Smirnova, T.V. Fesenko, YuI Gnatyuk, A.M. Eremenko, V.A. Pokrovskiy, J. Adv. Oxid Technol. 11, 551 (2008)

    CAS  Google Scholar 

  23. N.P. Smirnova, N.I. Surovtseva, T.V. Fesenko, E.M. Demianenko, A.G. Grebenyuk, A.M. Eremenko, J. Nanostruct. Chem. 5, 333 (2015)

    Article  CAS  Google Scholar 

  24. N. Smirnova, T. Fesenko, M. Zhukovsky, J. Goworek, A. Eremenko, Nanoscale Res. Lett. 10, 500 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. T.V. Fesenko, S.V. Snegir, N.I. Surovtseva, N.P. Smirnova, V.A. Pokrovsky, Chem. Phys. Technol. Surf. 4, 276 (2013)

    CAS  Google Scholar 

  26. A.C. Pratt, Photochemistry 30, 230 (1999)

    Article  CAS  Google Scholar 

  27. S.N. Guha, J.P. Mittal, J. Photochem. Photobiol. A Chem. 92, 181 (1995)

    Article  CAS  Google Scholar 

  28. T. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J. Zhao, N. Serpone, J. Photochem. Photobiol. A Chem. 140, 163 (2001)

    Article  CAS  Google Scholar 

  29. E. Stathatos, P. Lianos, C. Tsakiroglou, Langmuir 20, 9103 (2004)

    Article  CAS  PubMed  Google Scholar 

  30. S. Coon, T. Zakharian, N. Littlefield, V. Pak, Langmuir 16, 9690 (2000)

    Article  CAS  Google Scholar 

  31. V.K. Runov, Zhurnal Fizicheskoi Khimii 72, 933 (1998)

    CAS  Google Scholar 

  32. N.N. Vlasova, L.P. Golovkova, N.G. Stukalina, Colloid J. 74, 25 (2012)

    Article  CAS  Google Scholar 

  33. D.R. Worrall, S. Williams, A. Eremenko, N. Smirnova, O. Yakimenko, G. Staruch, Colloids Surf. A: Physicochem. Eng. Asp. 230, 45 (2004)

    Article  CAS  Google Scholar 

  34. S. Imamura, S. Ishida, H. Tarumoto, Y. Saito, T. Ito, J. Chem. Soc. Faraday Trans. 89, 757 (1993)

    Article  CAS  Google Scholar 

  35. A.M. Eremenko, N.P. Smirnova, V.M. Ogenko, A.A. Chuiko, Res. Chem. Intermed. 19, 855 (1993)

    Article  CAS  Google Scholar 

  36. T.H. James, The Theory of the Photographic Process, 4th edn. (Macmillan, New York, 1977)

    Google Scholar 

  37. E. Gallopini, S. Thyagarajan, The Spectrum 18, 25 (2005)

    Google Scholar 

  38. T. Yonezawa, H. Kawasaki, A. Tarui et al., Anal. Sci. 25, 339 (2009)

    Article  CAS  PubMed  Google Scholar 

  39. T.-C. Chiu, L.-C. Chang, C.-K. Chiang, H.-T. Chang, J. Am. Soc. Mass Spectrom. 19, 1343 (2008)

    Article  CAS  PubMed  Google Scholar 

  40. L. Hua, J. Chen, L. Ge, S.N. Tan, J. Nanopart. Res. 9, 1133 (2007)

    Article  CAS  Google Scholar 

  41. K. Shrivas, H.-F. Wu, Rapid Commun. Mass Spectrom. 22, 2863 (2008)

    Article  CAS  PubMed  Google Scholar 

  42. M.T. Spencer, H. Furutani, S.J. Oldenburg et al., J. Phys. Chem. C 112, 4083 (2008)

    Article  CAS  Google Scholar 

  43. K. Awazu, M. Fujimaki, C. Rockstuhl et al., J. Am. Chem. Soc. 130, 1676 (2008)

    Article  CAS  PubMed  Google Scholar 

  44. W. Cai, H. Hofmeister, T. Rainer, Phys. E 11, 339 (2001)

    Article  CAS  Google Scholar 

  45. L. Yang, G.H. Li, J.G. Zhang, L.D. Zhang, Appl. Phys. Lett. 78, 102 (2001)

    Article  CAS  Google Scholar 

  46. H. Bi, W. Cai, H. Shi, X. Liu, Chem. Phys. Lett. 57, 249 (2002)

    Article  Google Scholar 

  47. S. Peng, J.M. McMahon, G.C. Schatz, S.K. Gray, Y. Sun, PNAS 107, 14530 (2010)

    Article  PubMed  Google Scholar 

  48. M.A. Smithard, Solid State Commun. 13, 153 (1973)

    Article  CAS  Google Scholar 

  49. K.P. Charlé, F. Frank, W. Schulze, Ber. Bunsenges. Phys. Chem. 88, 350 (1984)

    Article  Google Scholar 

  50. A.O. Govorov, H.H. Richardson, Nano Today 2, 30 (2007)

    Article  Google Scholar 

  51. O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko et al., Phys. Rev. B 79, 235438 (2009)

    Article  CAS  Google Scholar 

  52. M.G. Kucherenko, T.M. Chmereva, D.A. Kislov, High Energy Chem. 43, 587 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Smirnova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, N., Eremenko, A., Fesenko, T. et al. UV–Vis spectroscopy and desorption/ionization mass spectrometry as the tools for investigation of adsorbed dye photodegradation. Res Chem Intermed 45, 4163–4177 (2019). https://doi.org/10.1007/s11164-019-03898-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03898-x

Keywords

Navigation