Skip to main content

Advertisement

Log in

Photoelectrochemical properties of the composites based on TiO2 nanotubes, CdSe and graphene oxide

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The photoelectrochemical properties of electrodes based on a nanocomposite consisting of TiO2 nanotubes and CdSe films modified with graphene oxide have been studied. It is shown that in such a nanocomposite, a good adhesion of the CdSe layer to the substrate is provided. In this nanocomposite, the cathodic dark leakage currents are lower, and the efficiency of photoelectrodes is higher. From studies of Raman spectra, in which 2LO and 3LO phonon lines were observed, the quality of the modified polycrystalline films of CdSe was concluded. The amount of graphene oxide in NT-TiO2/CdSe/GO composite was determined to be 1.16 mass%, which allows one to obtain optimal photosensitivity of electrodes. It was established that the introduction of graphene oxide into semiconductor electrodes leads to an increase in their photosensitivity which is associated with a decrease of the surface recombination rate. The efficiency of the investigated nanocomposites in the photoelectrochemical cell for hydrogen production was studied together with composites based on graphene materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  CAS  Google Scholar 

  2. YuV Pleskov, Solar Energy Conversion: A Photoelectrochemical Approach (Springer, Berlin, 1990)

    Book  Google Scholar 

  3. A.J. Nozik, R. Memming, J. Phys. Chem. 100, 13061 (1996)

    Article  CAS  Google Scholar 

  4. T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Int. J. Hydrogen Energy 27, 991 (2002)

    Article  CAS  Google Scholar 

  5. V.M. Aroutiounian, V.M. Arakelyan, G.E. Shahnazaryan, Sol. Energy 78, 581 (2005)

    Article  CAS  Google Scholar 

  6. G.T. Wang, J.P. Tu, X.L. Wang, J.B. Wu, W.K. Zhang, Int. J. Hydrogen Energy 32, 3586 (2007)

    Article  CAS  Google Scholar 

  7. K. Akuto, Y. Sakurai, J. Electrochem. Soc. 148, A121 (2001)

    Article  CAS  Google Scholar 

  8. S.-C. Moon, Y. Matsumura, M. Kitano, M. Matsuoka, M. Anpo, Res. Chem. Intermed. 29, 233 (2003)

    Article  CAS  Google Scholar 

  9. Z. Li, W. Luo, M. Zhang, J. Feng, Z. Zou, Energy Environ. Sci. 6, 347 (2013)

    Article  CAS  Google Scholar 

  10. C. Santato, M. Ulmann, J. Augustynski, J. Phys. Chem. B 105, 936 (2001)

    Article  CAS  Google Scholar 

  11. L. Weinhardt, M. Blum, M. Bär, C. Heske, B. Cole, B. Marsen, E.L. Miller, J. Phys. Chem. C 112, 3078 (2008)

    Article  CAS  Google Scholar 

  12. L.G. Shcherbakova, D.B. Danko, V.B. Muratov, I.A. Kossko, YuM Solonin, G.Ya. Kolbasov, I.A. Rusetskii, in Metal Hydride Use for Solar Energy Accumulation, NATO Security Through Science Series A Chemistry and Biology, ed. by T.N. Veziroglu, S.Yu. Zaginaichenko, D.V. Schur, B. Baranowski, A.V. Shpak, V.V. Skorokhod, A. Kale (Springer, Berlin, 2007), p. 699

    Google Scholar 

  13. Hamnett et al., Faraday Discuss. Chem. Soc. 70, 93 (1980)

    Article  Google Scholar 

  14. N. Kopidakis, K. Benkstein, J. van de Lagemaat, A.J. Frank, J. Phys. Chem. B 107, 11307 (2003)

    Article  CAS  Google Scholar 

  15. K.D. Benkstein, N. Kopidakis, J. van de Lagemaat, A.J. Frank, J. Phys. Chem. B 107, 7759 (2003)

    Article  CAS  Google Scholar 

  16. M. Grӓtzel (ed.), Energy Resources Through Photochemistry and Catalysis (Academic Press, London, 1983)

    Google Scholar 

  17. E.L. Miller, D. Paluselli, B. Marsen, R.E. Rocheleau, Sol. Energy Mater. Sol. Cells 88, 131 (2005)

    Article  CAS  Google Scholar 

  18. A. Fujishima, X. Zhang, D.A. Tryk, Int. J. Hydrogen Energy 32, 2664 (2007)

    Article  CAS  Google Scholar 

  19. M.A. Zhukovskiy, N.P. Smirnova, I.A. Rusetsky, G.Ya. Kolbasov, A.M. Eremenko, J. Appl. Spectrosc. 81, 238 (2014)

    Article  CAS  Google Scholar 

  20. L. Wu, M. Zhang, J. Li, C. Cen, X. Li, Res. Chem. Intermed. 42, 4569 (2016)

    Article  CAS  Google Scholar 

  21. I.A. Rusetskii, L. Shcherbakova, M.O. Danilov, I.A. Slobodyanyuk, G.Ya. Kolbasov, S. Fomanyuk, Y.M. Solonin, ECS Trans. 87, 335 (2018)

    Article  CAS  Google Scholar 

  22. G. Wang, X. Shen, J. Yao, J. Park, Carbon 47, 2049 (2009)

    Article  CAS  Google Scholar 

  23. Y. Xin, J. Liu, X. Jie, W. Liu, F. Liu, Y. Yin, J. Gu, Z. Zou, Electrochim. Acta 60, 354 (2012)

    Article  CAS  Google Scholar 

  24. Y. Shao, S. Zhang, C. Wang, Z. Nie, J. Liu, Y. Wang, Y. Lin, J. Power Sources 195, 4600 (2010)

    Article  CAS  Google Scholar 

  25. YuH Ng, A. Iwase, N.J. Bell, A. Kudo, R. Amal, Catal. Today 164, 353 (2011)

    Article  CAS  Google Scholar 

  26. P.S. Lim, A. Pandikumar, N.M. Huang, H.N. Lim, Int. J. Energy Res. 39, 812 (2015)

    Article  CAS  Google Scholar 

  27. Z. Xiang, X. Zhou, G. Wan, G. Zhang, D. Cao, ACS Sustain. Chem. Eng. 2, 1234 (2014)

    Article  CAS  Google Scholar 

  28. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, Sol. Energy Mater. Sol. Cells 90, 2011 (2006)

    Article  CAS  Google Scholar 

  29. M.O. Danilov, I.A. Slobodyanyuk, I.A. Rusetskii, G.Ya. Kolbasov, Russ. J. Appl. Chem. 86, 858 (2013)

    Article  CAS  Google Scholar 

  30. M.O. Danilov, I.A. Slobodyanyuk, I.A. Rusetskii, G.Ya. Kolbasov, in Section II—Chemical-Based Methods, Chapter 13, Graphene Science Handbook: Fabrication Methods, ed. by M. Aliofkhazraei, N. Ali, W.I. Milne, C.S. Ozkan, S. Mitura, J.L. Gervasoni (CRC Press, Boca Raton, 2016), p. 205

    Chapter  Google Scholar 

  31. A.C. Ferrari, J.C. Meyer, V. Scardasi, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)

    Article  CAS  PubMed  Google Scholar 

  32. C.C. Chen, W. Bao, J. Theiss, C. Dames, C.N. Lau, S.B. Cronin, Nano Lett. 9, 4172 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. R. Nemanich, S. Solin, Phys. Rev. B 20, 392 (1979)

    Article  CAS  Google Scholar 

  34. R. Vidano, D. Fishbach, Solid State Commun. 39, 341 (1981)

    Article  CAS  Google Scholar 

  35. A.C. Ferrari, D. Basko, Nat. Nanotechnol. 8, 235 (2013)

    Article  CAS  Google Scholar 

  36. V.S. Grinevich, V.E. Polishchuk, V.V. Serdyuk, V.A. Smyntyna, Izvestiya Akademii Nauk SSSR Neorg. Mater. 18, 1262 (1982)

    CAS  Google Scholar 

  37. S. Mahato, N. Shakti, A.K. Kar, Mater. Sci. Semicond. Process. 39, 742 (2015)

    Article  CAS  Google Scholar 

  38. A.K. Tripathy, H.T. Tien, J. Appl. Electrochem. 17, 1100 (1987)

    Article  CAS  Google Scholar 

  39. S. Mikhailov, in Physics and Applications of Graphene—Experiments, ed. by S. Mikhailov (InTech, Croatia, 2011)

    Chapter  Google Scholar 

  40. Yu.Ya. Gurevich, YuV Pleskov, Semicond. Semimet. 19, 255 (1983)

    Article  CAS  Google Scholar 

  41. M.P. Dare-Edwards, J.B. Goodenough, A. Hamnett, K.R. Seddon, R.D. Wright, Faraday Discuss. Chem. Soc. 70, 285 (1980)

    Article  Google Scholar 

  42. C.A. Grimes, G.K. Mor, TiO 2 Nanotube Arrays: Synthesis, Properties, and Applications (Springer US, New York, 2009), p. 358

    Book  Google Scholar 

  43. O. Calzadilla, M. Zapata-Torres, L. Narvaez, S. Jiménez, F. Rábago, Superficies y Vacío 14, 35 (2002)

    Google Scholar 

  44. G. Williams, B. Seger, P.V. Kamat, ACS Nano 2, 1487 (2008)

    Article  CAS  Google Scholar 

  45. I.V. Lightcap, T.H. Kosel, P.V. Kamat, Nano Lett. 10, 577 (2010)

    Article  CAS  Google Scholar 

  46. E.V. Kuzminskii, G.Ya. Kolbasov, Sol. Energy Mater. Sol. Cells 56, 93 (1999)

    Article  CAS  Google Scholar 

  47. G.Ya. Kolbasov, I.A. Rusetskii, Photoelectronics. Inter-Universities Scientific Articles, Odessa I.I. Mechnikov National University Ministry of Education and Science of Ukraine, vol. 17, ed. by V.A. Smyntyna, M.I. Kutalova, V.T. Mak (2008), p. 132

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ya. Kolbasov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusetskyi, I.A., Danilov, M.O., Fomanyuk, S.S. et al. Photoelectrochemical properties of the composites based on TiO2 nanotubes, CdSe and graphene oxide. Res Chem Intermed 45, 4121–4132 (2019). https://doi.org/10.1007/s11164-019-03895-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03895-0

Keywords

Navigation