Skip to main content
Log in

Effect of heterogeneous catalytic methane oxidation on kinetics of conductivity response of adsorption semiconductor sensors based on Pd/SnO2 nanomaterial

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Nanosized semiconductive Pd-containing sensor materials based on SnO2 were obtained by sol–gel technique. The highly sensitive gas sensor based on 1.41 wt% Pd/SnO2 nanomaterial showed the maximum response value of 12.4 to 930 ppm CH4, and the kinetics of the sensor conductivity response and recovery were studied. The average particle size of the material with the highest response to methane was 14–15 nm. Study of the CH4 oxidation kinetics on the surface of the 1.41 wt% Pd/SnO2 sensor nanomaterial allowed the proposal of a theoretical model that can describe the kinetics of the conductivity response and recovery for such Pd-doped sensors to methane. The values of the methane oxidation activation energies obtained from the experimental kinetic data for the CH4 oxidation reaction on the 1.41 wt% Pd/SnO2 gas-sensitive material and the model based on the data of the sensor conductivity response and recovery were almost the same, indicating a leading role for the heterogeneous catalytic oxidation reaction occurring on the sensor surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E. Abdelkader, L. Nadjia, V. Rose-Noelle, Int. J. Ind. Chem. 7, 53 (2016)

    Article  CAS  Google Scholar 

  2. P.V. Viet, C.M. Thi, L.V. Hieu, J. Nanomater. 2016, 1 (2016)

    Google Scholar 

  3. A.M. Al-Hamdi, M. Sillanpää, J. Dutta, Res. Chem. Intermed. 42, 3055 (2015)

    Article  CAS  Google Scholar 

  4. H. Zhang, G. Wang, G. Dai, X. Xu, Res. Chem. Intermed. (2019)

  5. B. Falabrettia, J. Robertson, J. Appl. Phys. 102, 123703/1 (2007)

  6. R.E. Aitchison, Aust. J. Appl. Sci. 5, 10 (1954)

    CAS  Google Scholar 

  7. Y.S. He, J.C. Campbell, R.C. Murphy, M.F. Arendt, J.S. Swinnea, J. Mater. Res. 8, 3131 (1993)

    Article  CAS  Google Scholar 

  8. X. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Nature 421, 241 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. L. Vayssieres, M. Graetzel, Angew. Chem. Int. Ed. 43, 3666 (2004)

    Article  CAS  Google Scholar 

  10. Y. Fukai, Y. Kondo, S. Mori, E. Suzuki, Electrochem. Commun. 9, 1439 (2007)

    Article  CAS  Google Scholar 

  11. G.R.R.A. Kumara, K. Tennakone, I.R.M. Kottegoda, P.K.M. Bandaranayake, A. Konno, M. Okuya, S. Kaneko, K. Murakami, Semicond. Sci. Technol. 18, 312 (2003)

    Article  CAS  Google Scholar 

  12. W.F.L. Chen, M.L. Liu, Chem. Commun. 18, 1829 (1999)

    Article  Google Scholar 

  13. A.V. Marikutsa, M.N. Rumyantseva, A.M. Gaskov, A.M. Samoylov, Inorg. Mater. 51, 1329 (2015)

    Article  CAS  Google Scholar 

  14. G. Korotcenkov, S. Han, B. Cho B, V. Brinzari, Crit. Rev. Solid State Mater. Sci. 34, 1 (2009)

  15. S.G. Ansari, P. Boroojerdian, S.R. Sainkar, R.N. Karekar, R.C. Aiyer, S.K. Kulkarni, Thin Solid Films 295, 271 (1997)

    Article  CAS  Google Scholar 

  16. P.J.D. Peterson, A. Aujla, K.H. Grant, A.G. Brundle, M.R. Thompson, J.V. Hey, R.J. Leigh, Sensors 17, 1653 (2017)

    Article  CAS  Google Scholar 

  17. G.F. Fine, L.M. Cavanagh, A. Afonja, R. Binions, Sensors 10, 5469 (2010)

    Article  CAS  PubMed  Google Scholar 

  18. Y.-H. Zhang, C.-Y. Liu, B.-B. Jiu, Y. Liu, F.-L. Gong, Res. Chem. Intermed. 44, 1569 (2018)

    Article  CAS  Google Scholar 

  19. N.M. Vuong, N.M. Hieu, H.N. Hieu, H. Yi, D. Kim, Y.-S. Han, M. Kim, Sens. Actuators B: Chem. 192, 327 (2014)

    Article  CAS  Google Scholar 

  20. L. Wenbo, D. Degong, X. Qingzhong, D. Yonggang, X. Ya, Z. Jianqiang, P. Xinglong, X. Wei, Sens. Actuators B: Chem. 254, 393 (2018)

    Article  CAS  Google Scholar 

  21. R. Burch, M.J. Hayes, J. Mol. Catal. A: Chem. 100, 13 (1995)

    Article  CAS  Google Scholar 

  22. R. Burch, D.J. Crittle, M.J. Hayes, Catal. Today 47, 229 (1999)

    Article  CAS  Google Scholar 

  23. M. Hubner, R.G. Pavelko, N. Barsan, U. Weimar, Sens. Actuators B: Chem. 154, 264 (2011)

    Article  CAS  Google Scholar 

  24. N. Barsan, Sens. Actuators B: Chem. 17, 241 (1994)

    Article  CAS  Google Scholar 

  25. A. Setkus, Sens. Actuators B Chem. 87, 346 (2002)

    Article  CAS  Google Scholar 

  26. P. Montmeat, R. Lalauze, J.-P. Viricelle, G. Tournier, C. Pijolat, Sens. Actuators B Chem. 103, 84 (2004)

    Article  CAS  Google Scholar 

  27. N. Yamazoe, K. Shimanoe, Sens. Actuators B Chem. 128, 566 (2008)

    Article  CAS  Google Scholar 

  28. N. Yamazoe, K., Suematsu K. Shimanoe, Sens. Actuators B Chem. 227, 403 (2016)

  29. J. Rebholz, P. Bonanati, C. Jaeschke, M. Hübner, L. Mädler, U. Weimar, N. Barsan, Sens. Actuators B Chem. 188, 631 (2013)

    Article  CAS  Google Scholar 

  30. E.V. Sokovykh, L.P. Oleksenko, N.P. Maksymovych, I.P. Matushko, J. Therm. Anal. Calorim. 121, 1159 (2015)

    Article  CAS  Google Scholar 

  31. L.P. Oleksenko, N.P. Maksymovych, E.V. Sokovykh, I.P. Matushko, A.I. Buvailo, N. Dollahon, Sens. Actuators B Chem. 196, 298 (2014)

    Article  CAS  Google Scholar 

  32. G. Fedorenko, L. Oleksenko, N. Maksymovych, G. Skolyar, O. Ripko, Nanoscale Res. Lett. 12, 329 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. L.P. Oleksenko, N.P. Maksymovych, A.I. Buvailo, I.P. Matushko, N. Dollahon, Sens. Actuators B Chem. 174, 39 (2012)

    Article  CAS  Google Scholar 

  34. G.V. Fedorenko, L.P. Oleksenko, N.P. Maksymovych, I.P. Matushko, Russ. J. Phys. Chem. 89, 2259 (2015)

    Article  CAS  Google Scholar 

  35. K.-I. Fujimoto, F.H. Ribeiro, M. Avalos-Borja, E. Iglesia, J. Catal. 179, 431 (1998)

    Article  CAS  Google Scholar 

  36. F. H. Ribeiro, M. Chow, R. A. Dalla Betta, J. Catal. 146, 537 (1994)

  37. I.X. Green, W. Tang, M. Neurock, J.T. Yates, Science 333, 736 (2011)

    Article  CAS  PubMed  Google Scholar 

  38. T.F. Jaramillo, K.P. Jorgensen, J. Bonde, Science 317, 100 (2007)

    Article  CAS  Google Scholar 

  39. D. Koziej, M. Hubner, N. Barsan, U. Weimar, M. Sikora, J.-D. Grunwaldt, Phys. Chem. Chem. Phys. 11, 8620 (2009)

    Article  CAS  PubMed  Google Scholar 

  40. W.P. Kang, C.K. Kim, J. Appl. Phys. 75, 4237 (1994)

    Article  CAS  Google Scholar 

  41. A. Cabot, J. Arbiol, J.R. Morante, U. Weimar, N. Barsan, W. Gopel, Sens. Actuators B Chem. 70, 87 (2000)

    Article  CAS  Google Scholar 

  42. T. A. Miller, S. D. Bakrania, C. Perez, in M. S. Wooldridge in Functional Nanomaterials, ed. by Kurt E. Geckeler, Edward Rosenberg (American Scientific, Valencia, 2006), p. 515

  43. V. Vorotyntsev, N. Maksimovich, L. Yeremina, O. Kaskevich, N. Nikitina, Sens. Actuators B Chem. 35–36, 333 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmila Oleksenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oleksenko, L., Fedorenko, G. & Maksymovych, N. Effect of heterogeneous catalytic methane oxidation on kinetics of conductivity response of adsorption semiconductor sensors based on Pd/SnO2 nanomaterial. Res Chem Intermed 45, 4101–4111 (2019). https://doi.org/10.1007/s11164-019-03893-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03893-2

Keywords

Navigation