Skip to main content
Log in

Cerium-doped mesoporous BaTiO3/TiO2 nanocomposites: structural, optical and photocatalytic properties

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Nanoscale composite materials based on cerium, barium titanate and titanium dioxide were synthesized by thermal hydrolysis. The obtained individual TiO2, BaTiO3 and as-synthesized Ce/xBaTiO3/TiO2 semiconductive nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive spectrometry, transmission electron microscopy, nitrogen adsorption–desorption, UV–vis diffuse reflectance spectroscopy, and Fourier transform infrared spectroscopy. The structural investigations revealed that all prepared powders were nanocrystalline with an average crystallite size within the range of 5–17 nm. Analysis of nitrogen adsorption–desorption isotherms for the synthesized nanocomposites showed the presence of a hysteresis loop, which is evidence for the mesoporous structure of the powders. The photocatalytic degradation of the model pollutants (Safranine T and Rhodamine B) was carried out under UV irradiation. Ce/xBaTiO3/TiO2 nanocomposites showed higher photocatalytic activity compared to pure TiO2 and BaTiO3 as well as BaTiO3/TiO2. An increase of the amount of BaTiO3 in Ce/xBaTiO3/TiO2 samples by more than 12% reduces the photocatalytic activity of nanocomposites while doping of BaTiO3/TiO2 samples with cerium increases their photoactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The present research results have not been published before. Data and Materials are all in the main text, figures, and tables.

References

  1. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114, 9919 (2014)

    Article  CAS  PubMed  Google Scholar 

  2. N. Chorna, N. Smirnova, V. Vorobets, G. Kolbasov, O. Linnik, Appl. Sur. Sci. 473, 343 (2019)

    Article  CAS  Google Scholar 

  3. O.P. Linnik, M.A. Zhukovskiy, G.N. Starukh, N.P. Smirnova, N.V. Gaponenko, A.M. Asharif, L.S. Khoroshko, V.E. Borisenko, J. Appl. Spectrosc. 81, 990 (2015)

    Article  CAS  Google Scholar 

  4. M. Nasir, J. Zhang, F. Chen, B. Tian, Res. Chem. Intermed. 41, 1607 (2015)

    Article  CAS  Google Scholar 

  5. M.V. Bondarenko, T.A. Khalyavka, N.D. Shcherban, N.N. Tsyba, Nanosis. Nanomat. Nanotehnol. 15, 1 (2017)

    Google Scholar 

  6. S. Kappadan, T.W. Gebreab, S. Thomas, N. Kalarikkal, Mater. Sci. Semicond. Process. 51, 42 (2016)

    Article  CAS  Google Scholar 

  7. S.V. Khalameida, V.V. Sidorchuk, V.A. Zazhigalov, T.I. Mironyuk, Rus. J. Appl. Chem. 83, 1799 (2010)

    Article  CAS  Google Scholar 

  8. D.L. Gomathi, G. Krishnamurthy, J. Phys. Chem. A 115, 460 (2011)

    Article  CAS  Google Scholar 

  9. J. Liu, Yu. Sun, Zh. Li, Cryst. Eng. Commun. 14, 1473 (2012)

    Article  CAS  Google Scholar 

  10. W.P. Wang, H. Yang, T. Xian et al., Eng. Med. 4, 6 (2012)

    Google Scholar 

  11. S.E. Stanca, R. Müller, M. Urban et al., Catal. Sci. Technol. 2, 1472 (2012)

    Article  CAS  Google Scholar 

  12. T.A. Khalyavka, N.N. Tsyba, S.V. Kamyshan, E.I. Kapinus, High Energy Chem. 49, 263 (2015)

    Article  CAS  Google Scholar 

  13. Ö. Küçük, S. Teber, İ.C. Kaya, H. Akyildiz, V. Kalem, J. Alloys Compd. 765, 82 (2018)

    Article  CAS  Google Scholar 

  14. T.A. Kurniawan, L. Yanyan, T. Ouyang, A.B. Albadarin, G. Walker, Mater. Sci. Semicond. Process. 73, 42 (2018)

    Article  CAS  Google Scholar 

  15. K.J. Vajidar, D.H. Chen, J.L. Gossage, K. Li, X. Ye, G. Gadiyar, B. Ardoin, Chem. Eng. Technol. 30, 4 (2007)

    Article  Google Scholar 

  16. N. Golego, S.A. Studenikin, M. Cocivera, Chem. Mater. 10, 7 (1998)

    Article  Google Scholar 

  17. P. Magalhães, L. Andrade, O.C. Nunes, A. Mendes, Red. Adv. Mater. Sci. 51, 91 (2017)

    Google Scholar 

  18. C. Dong, J. Liu, M. Xing, J. Zhang, Res. Chem. Intermed. 44, 7079 (2018)

    Article  CAS  Google Scholar 

  19. V. Janaki, B.T. Oh, K. Shanthi, K.-J. Lee, A.K. Ramasamy, S. Kamala-Kannan, Res. Chem. Intermed. 38, 1431 (2012)

    Article  CAS  Google Scholar 

  20. O. Linnik, N. Chorna, N. Smirnova, Nanoscale Res. Lett. 12, 249 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M. Nasr, C. Eid, R. Habchi, P. Miele, M. Bechelany, Chemsuschem 11, 3023 (2018)

    Article  CAS  PubMed  Google Scholar 

  22. Y. Liu, Z. Ke, D. Shuo, G.G. Siu, ICORS 2, 516 (2004)

    Google Scholar 

  23. A.M. Slipenyuk, M.D. Glinchuk, I.P. Bykov, L.P. Yurchenko, V.A. Mikheev, O.A. Frenkel, V.D. Tkachenko, E.P. Garmash, Conden. Mat. Phys. 6, 2(34) (2003)

  24. D. Wojcieszak, M. Mazur, D. Kaczmarek, J. Domaradzki, Mater. Sci.-Pol. 35, 725 (2017)

    Article  CAS  Google Scholar 

  25. F. Mikaeili, S. Topcu, G. Jodhani, P.-I. Gouma, Catalysts 8, 342 (2018)

    Article  CAS  Google Scholar 

  26. P. Ellappan, L.R. Miranda, Internal. J. Photoen. 2014 (2014)

  27. J. Li, Sh Jia, G. Sui, L. Du, Chem. Papers 72, 369 (2018)

    Article  CAS  Google Scholar 

  28. A.A. Dvernyakova, G.N. Novitskaya, L.L. Chmel’, V.V. Shimanovskaya, Ukr. Khim. Zh. 50, 3 (1984)

    Google Scholar 

  29. V.V. Shimanovskaya, A.A. Dvernyakova, V.V. Strelko, Izv. Acad. Nauk SSSR, Neorgan. Mater. 24, 1188 (1988)

    CAS  Google Scholar 

  30. S. Lowell, J.E. Shields, Powder Surface Area and Porosity (Chapman & Hall, London, 1998)

    Google Scholar 

  31. K. Sing, D. Everett, R. Haul, L. Moscou, R. Pierotti, J. Rouquerol, T. Siemieniewska, Pur. Appl. Chem. 57, 4 (1985)

    Article  Google Scholar 

  32. A. Ansón-Casaos, I. Tacchini, A. Unzue, M.T. Martínez, Appl. Surf. Sci. 270, 675 (2013)

    Article  CAS  Google Scholar 

  33. Z.W. Qu, G.J. Kroes, J. Phys. Chem. B. 110, 23306 (2006)

    Article  CAS  PubMed  Google Scholar 

  34. W.G. Fateley, F.R. Dollish, N.T. McDevitt, F.F. Bentley, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations (Wiley-Interscience, New York, 1972)

    Google Scholar 

  35. A. Davydov, IK-Spektroskopiya v Khimii Poverkhnosti Okislov (Nauka, Novosibirsk, 1984). (in Russian)

    Google Scholar 

  36. V.A. Zazhigalov, O.V. Sachuk, O.A. Diyuk, V.L. Starchevskyy, S.V. Kolotilov, Z. Sawlowicz, S.M. Shcherbakov, O.I. Zakutevskyy, Nanochem. Biotechnol. Nanomater. Appl. 214, 297 (2018)

    CAS  Google Scholar 

  37. Y. Ni, H. Zheng, N. Xiang, K. Yuan, J. Hong, RSC Adv. (2015)

  38. E.T. Bender, P. Katta, A. Lotus, S.J. Park, G.G. Chase, R.D. Ramsier, Chem. Phys. Lett. 423, 302 (2006)

    Article  CAS  Google Scholar 

  39. L.E. Davies, N.A. Bonini, S. Locatelli, E.E. Gonzo, Latin Amer. Appl. Res. 35, 23 (2005)

    CAS  Google Scholar 

  40. C.H. Cheng, J. Lehmann, J.E. Thies, S.D. Burton, M.H. Engelhard, Org. Geochem. 37, 1477 (2006)

    Article  CAS  Google Scholar 

  41. S.D. Mo, W.Y. Ching, Phys. Rev. B 51, 13023 (1995)

    Article  CAS  Google Scholar 

  42. Zh Fan, F. Meng, J. Gong, H. Li, Y. Hu, D. Liu, Mater. Let. 175, 36 (2016)

    Article  CAS  Google Scholar 

  43. V.N. Reddy, K.C. Babu Naidu, T. Subbarao, J Ovon Res 12, 185 (2016)

    CAS  Google Scholar 

  44. V. Mishra, A. Sagdeo, V. Kumar, M.K. Warshi, H.M. Rai, S.K. Saxena, D.R. Roy, V. Mishra, R. Kumar, P.R. Sagdeo, J. Appl. Phys. 122, 065105-1 (2017)

    Google Scholar 

  45. X.F. Lei, X.X. Xue, H. Yang, C. Chen, X. Li, J.X. Pei, M.C. Niu, Y.T. Yang, X.Y. Gao, J. Alloys Comp. 646, 541 (2015)

    Article  CAS  Google Scholar 

  46. X.L. Fu, J.L. Long, X.X. Wang, D.Y.C. Leung, Z.X. Ding, L. Wu, Z.Z. Zhang, Z.H. Li, X.Z. Fu, Int. J. Hydrog. Energy 33, 6484 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support of the National Academy of Sciences of Ukraine under the Research Programs “Development of alternative methods for the preparation of nanosized oxide catalysts and composites based on Mo, Ti, Zr, Nb and Sn” 2018–2022, “Fundamental problems of nanostructured systems, nanomaterials and nanotechnologies” 2016–2020 and VC-180 “Optical, electrophysical and structural properties of disordered molecular systems and nanocomposites” 2016–2020 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Khalyavka.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalyavka, T.A., Shcherban, N.D., Shymanovska, V.V. et al. Cerium-doped mesoporous BaTiO3/TiO2 nanocomposites: structural, optical and photocatalytic properties. Res Chem Intermed 45, 4029–4042 (2019). https://doi.org/10.1007/s11164-019-03888-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03888-z

Keywords

Navigation