Selective gas conversion of isopropyl alcohol over silver nanoparticles (Ag-NPs) supported on new mesoporous silica precipitated from natural resources

  • Asmaa Mourhly
  • Adnane El Hamidi
  • Mohammed Halim
  • Said ArsalaneEmail author


A series of silver nanoparticles (Ag-NPs) loaded onto new mesoporous silica (MS), produced from natural cheap pumice was prepared via wet impregnation and characterized by means of several analytical techniques. Catalysts Ag–x/MS with x = 3, 10 and 20 wt% have been investigated in the gas conversion of isopropyl alcohol (IPA) under N2 and air atmospheres and exhibit a particular catalytic behavior different from conventional crystalline and supported silver-based catalysts. In N2 atmosphere, Ag–x/MS catalysts provide propene by dehydration process with selectivity greater than 95% whereas under the air atmosphere at low temperature (≤ 423 K), the reaction only produces acetone by oxidative dehydrogenation. This bifunctionality was due to special textural properties of MS support, characterized by high specific surface area (423 m2 g−1) and Bronsted acidic sites which are formed by bridged siloxanes (≡Si–O–Si≡) and silanols groups (≡Si–OH) leading to the formation of propene and on the other hand, to the high dispersion and redox properties of Ag-NPs under air atmosphere giving rise to “Ag-Ox” species which are selectively active for acetone production. The selective oxidative dehydrogenation toward acetone was confirmed by the non-detection of total oxidation products (CO/CO2) suggesting that the MS support preserves Ag-NPs against agglomeration and the redox properties of surface active “Ag-Ox” during the long-time service. The exceptional surface characteristics of MS produced from pumice and its promoting effect in the dispersion of active metal elements in the conversion of IPA exceeds broadly those obtained on various silica supports reported in the literature.

Graphic abstract


Silver nanoparticles Isopropyl alcohol conversion Silver-loaded mesoporous silica Dehydration Oxidative dehydrogenation 



This research was supported financially by the University of Mohammed V, Morocco under the Project No. SCH 04/09, and by the Hassan II Academy of Science and Technology, Morocco. The authors thank Pr. M. KACIMI for his assistance and contribution to catalytic tests.


  1. 1.
    A. Gangula, R. Podila, M. Ramakrishna, L. Karanam, C. Janardhana, A.M. Rao, Langmuir 27, 15268 (2011)CrossRefGoogle Scholar
  2. 2.
    H. Hu, J.H. Xin, H. Hu, X. Wang, D. Miao, Y. Liu, J. Mater. Chem. A 3, 11157 (2015)CrossRefGoogle Scholar
  3. 3.
    E. Hahm, M.G. Cha, E.J. Kang, X.-H. Pham, S.H. Lee, H.-M. Kim, D.-E. Kim, Y.-S. Lee, D.H. Jeong, B.-H. Jun, ACS Appl. Mater. Interfaces. 10, 40748 (2018)CrossRefGoogle Scholar
  4. 4.
    A.V. Shabalina, T.I. Izaak, T.S. Kharlamova, D.O. Martynova, I.N. Lapin, V.A. Svetlichnyi, Colloids Surfaces A 553, 80 (2018)CrossRefGoogle Scholar
  5. 5.
    Z. Zhang, C. Shao, Y. Sun, J. Mu, M. Zhang, P. Zhang, P.Z. Guo, P. Liang, C. Wang, Y. Liu, J. Mater. Chem. 22, 1387 (2012)CrossRefGoogle Scholar
  6. 6.
    D.P. Pham, K.K. Huynh, C.V. Tran, V.Q. Vu, T.T.V. Tran, Int. J. Mater. Sci. Appl. 3, 147 (2014)Google Scholar
  7. 7.
    G. Lazzara, G. Cavallaro, A. Panchal, R. Fakhrullin, A. Stavitskaya, V. Vinokurov, Y. Lvov, Curr. Opin. Colloid Interface Sci. 35, 42 (2018)CrossRefGoogle Scholar
  8. 8.
    S. Sadjadi, G. Lazzara, M. Malmir, M.M. Heravi, J. Catal. 366, 245 (2018)CrossRefGoogle Scholar
  9. 9.
    M. Davidson, Y. Ji, G.J. Leong, N.C. Kovach, B.G. Trewyn, R.M. Richards, A.C.S. Appl, Nano Mater. 1, 4386 (2018)CrossRefGoogle Scholar
  10. 10.
    A.V. Stavitskaya, A.A. Novikov, M.S. Kotelev, D.S. Kopitsyn, E.V. Rozhina, I.R. Ishmukhametov, R.F. Fakhrullin, E.V. Ivanov, Y.M. Lvov, V.A. Vinokurov, Nanomaterials 8, 391 (2018)CrossRefGoogle Scholar
  11. 11.
    S. Duhan, S. Devi, M. Srivastava, Indian J. Pure Appl. Phys. 48, 271 (2010)Google Scholar
  12. 12.
    R. Nain, S. Dobhal, P. Bidaliya, G. Saini, B. Pani, S. Sirohi, RSC Adv. 8, 20287 (2018)CrossRefGoogle Scholar
  13. 13.
    O. Lakbita, B. Rhouta, F. Maury, F. Senocq, M. Amjoud, L. Daoudi, Appl. Clay Sci. 172, 123 (2019)CrossRefGoogle Scholar
  14. 14.
    F. Liu, H. Wang, A. Sapi, H. Tatsumi, D. Zherebetskyy, H.L. Han, G.A. Somorjai, Catalysts 8, 226 (2018)CrossRefGoogle Scholar
  15. 15.
    P.G. Mertens, F. Cuypers, P. Vandezande, X. Ye, F. Verpoort, I.F.J. Vankelecom, D.E. De Vos, Appl. Catal. A Gen. 325, 130 (2007)CrossRefGoogle Scholar
  16. 16.
    P. Maity, C.S. Gopinath, S. Bhaduri, G.K. Lahiri, Green Chem. 11, 554 (2009)CrossRefGoogle Scholar
  17. 17.
    S. Proch, J. Herrmannsdörfer, R. Kempe, C. Kern, A. Jess, L. Seyfarth, J. Senker, Chem. Eur. J. 14, 8204 (2008)CrossRefGoogle Scholar
  18. 18.
    K.I. Shimizu, K. Sugino, K. Sawabe, A. Satsuma, Chem. Eur. J. 15, 2341 (2009)CrossRefGoogle Scholar
  19. 19.
    G.J. Hutchings, Catal. Today 122, 196 (2007)CrossRefGoogle Scholar
  20. 20.
    H. Miyamura, R. Matsubara, Y. Miyazaki, S. Kobayashi, Angew. Chem. Int. Edit. 46, 4151 (2007)CrossRefGoogle Scholar
  21. 21.
    M. Boutros, J.M. Trichard, P. Da Costa, Appl. Catal. B Environ. 91, 640 (2009)CrossRefGoogle Scholar
  22. 22.
    R. Yamamoto, Y. Sawayama, H. Shibahara, Y. Ichihashi, S. Nishiyam, S. Tsuruy, J. Catal. 234, 308 (2005)CrossRefGoogle Scholar
  23. 23.
    J. Jia, S. Zhang, F. Gu, Y. Ping, X. Guo, Z. Zhong, F. Su, Microporous Mesoporous Mater. 149, 158 (2012)CrossRefGoogle Scholar
  24. 24.
    T.T.N. Nguyen, M. Huchede, E. Blanco, F. Morfin, J.L. Rousset, L. Massin, M. Aouine, V. Bellière-Baca, J.M.M. Millet, Appl. Catal. A Gen. 549, 170 (2018)CrossRefGoogle Scholar
  25. 25.
    A. Mourhly, M. Khachani, A. El Hamidi, M. Kacimi, M. Halim, S. Arsalane, Nanomater. Nanotechnol. 5, 1 (2015)CrossRefGoogle Scholar
  26. 26.
    A. Mourhly, F. Jhilal, A. El Hamidi, M. Halim, S. Arsalane, Microchem. J. 145, 139 (2019)CrossRefGoogle Scholar
  27. 27.
    A. Lazaro, H.J.H. Brouwers, H.G. Quercia, J.W. Geus, Chem. Eng. J. 211, 112 (2012)CrossRefGoogle Scholar
  28. 28.
    A. Mourhly, M. Kacimi, M. Halim, S. Arsalane, Int. J. Hydrogen Energy (2018)Google Scholar
  29. 29.
    J.M. Lee, D.W. Kim, T.H. Kim, S.G. Oh, Mater. Lett. 61, 1558 (2007)CrossRefGoogle Scholar
  30. 30.
    T.H. Liou, Mater. Sci. Eng., A 364, 313 (2004)CrossRefGoogle Scholar
  31. 31.
    K.B. Ameen, T. Rajasekharan, M.V. Rajasekharan, J. Non Cryst. Solids 352, 737 (2006)CrossRefGoogle Scholar
  32. 32.
    W. Wang, J. Zhang, F. Chen, D. He, M. Anpo, J. Colloid Interface Sci. 323, 182 (2008)CrossRefGoogle Scholar
  33. 33.
    T. Lehmann, T. Wolff, C. Hamel, P. Veit, B. Garke, A. Seidel-Morgenstern, Microporous Mesoporous Mater. 151, 113 (2012)CrossRefGoogle Scholar
  34. 34.
    M. Tudose, D.C. Culita, P. Ionita, M.C. Chifiriuc, Ceram. Int. 41, 4460 (2015)CrossRefGoogle Scholar
  35. 35.
    Z. Wang, Q. Liu, J. Yu, T. Wu, G. Wang, Appl. Catal. A Gen. 239, 87 (2003)CrossRefGoogle Scholar
  36. 36.
    B. Mol, L.K. Joy, H. Thomas, V. Thomas, C. Joseph, T.N. Narayanan, S. Al-Harthi, N.V. Unnikrishnan, M.R. Anantharaman, Nanotechnology 27, 085701 (2016)Google Scholar
  37. 37.
    J.J. Angelito-Banos, L.M.R. Aviles-Arellano, G. Barreiro-Rodriguez, R. Flores-Farias, S. Flores-Farias, N.A. Guerrero-Guerrero, M.A. Hernández-Landaverde, A. Hurtado-Macias, A.M. López-Beltrán, M. López-Gómez, J.F. Louvier-Hernández, A. Méndez-Albores, R. Ochoa-Landín, C.A. Rodríguez-Proenza, A.G. Vázquez-Durán, J.J. Véles-Medina, J. González-Hernández, J. Sol Gel Sci. Technol. 30, 89 (2004)CrossRefGoogle Scholar
  38. 38.
    V. Raji, M. Chakraborty, P.A. Parikh, Ind. Eng. Chem. Res. 51, 5691 (2012)CrossRefGoogle Scholar
  39. 39.
    E. Kolobova, Y. Kotolevich, E. Pakrieva, G. Mamontov, M.H. Farias, V.C. Corberán, N. Bogdanchikova, J. Hemming, A. Smeds, P. Maki-Arvela, D.Y. Murzin, A. Pestryakov, Fuel 234, 110 (2018)CrossRefGoogle Scholar
  40. 40.
    R.R. Zaky, M.M. Hessien, A.A. El-Midany, M.H. Khedr, E.A. Abdel-Aal, K.A. El-Barawy, Powder Technol. 185, 31 (2008)CrossRefGoogle Scholar
  41. 41.
    S.R. Kamath, A. Proctor, Cereal Chem. 75, 484 (1998)CrossRefGoogle Scholar
  42. 42.
    K. Huang, Y. Lv, W. Zhang, S. Sun, B. Yang, F. Chi, S. Ran, X. Liu, Mater. Res. 18, 939 (2015)CrossRefGoogle Scholar
  43. 43.
    K. Kalantari, A.B.M. Afifi, S. Bayat, K. Shameli, S. Yousefi, N. Mokhtar, A. Kalantari, Arab. J. Chem. (2017)Google Scholar
  44. 44.
    M. Sharma, A. Mishra, V. Kumar, S. Basu, NANO 11, 1650046 (2016)CrossRefGoogle Scholar
  45. 45.
    P. Lu, Y.L. Hsieh, Powder Technol. 225, 149 (2012)CrossRefGoogle Scholar
  46. 46.
    H. Zhang, X. Zhao, X. Ding, H. Lei, X. Chen, D. An, Y. Li, Z. Wang, Bioresour. Technol. 101, 1263 (2010)CrossRefGoogle Scholar
  47. 47.
    M.M. Hessien, M.M. Rashad, R.R. Zaky, E.A. Abdel-Aal, K.A. El-Barawy, Mater. Sci. Eng., B 162, 14 (2009)CrossRefGoogle Scholar
  48. 48.
    A. Gervasini, A. Auroux, J. Catal. 131, 190 (1991)CrossRefGoogle Scholar
  49. 49.
    L.T. Zhuravlev, Colloids Surfaces A 73, 1 (2000)CrossRefGoogle Scholar
  50. 50.
    G. Mertens, J.J. Fripiat, J. Colloid Interface Sci. 42, 169 (1973)CrossRefGoogle Scholar
  51. 51.
    A. Van Meerbeek, A. Jelli, J.J. Fripiat, J. Catal. 46, 320 (1977)CrossRefGoogle Scholar
  52. 52.
    T. Okuhara, A. Kasai, N. Hayakawa, Y. Yoneda, M. Misono, J. Catal. 83, 121 (1983)CrossRefGoogle Scholar
  53. 53.
    W. Turek, J. Haber, A. Krowiak, Appl. Surf. Sci. 252, 823 (2005)CrossRefGoogle Scholar
  54. 54.
    J. Kijeński, A. Baiker, Catal. Today 5, 1 (1989)CrossRefGoogle Scholar
  55. 55.
    H. Hayashi, J.B. Moffat, J. Catal. 77, 473 (1982)CrossRefGoogle Scholar
  56. 56.
    S. Arsalane, K.O.H. Ali, M. Kacimi, R. Brochu, M. Ziyad, J. Chim. Phys. 92, 1428 (1995)CrossRefGoogle Scholar
  57. 57.
    M. Ziyad, S. Arsalane, M. Kacimi, G. Coudurier, J.M. Millet, J.C. Védrine, Appl. Catal. A Gen. 147, 363 (1996)CrossRefGoogle Scholar
  58. 58.
    Y.S. Sawayama, H. Shibahara, Y. Ichihashi, S. Nishiyama, S. Tsuruya, Ind. Eng. Chem. Res. 45, 8837 (2006)CrossRefGoogle Scholar
  59. 59.
    C.E. Volckmar, M. Bron, U. Bentrup, A. Martin, P. Claus, J. Catal. 261, 1 (2009)CrossRefGoogle Scholar
  60. 60.
    J. Shen, W. Shan, Y. Zhang, J. Du, H. Xu, K. Fan, Y. Tang, J. Catal. 237, 94 (2006)CrossRefGoogle Scholar
  61. 61.
    E.J. Grootendorst, V. Ponec, Stud. Surf. Sci. Catal. 78, 487 (1993)CrossRefGoogle Scholar
  62. 62.
    G.I. Golodets, Stud. Surf. Sci. Catal. 55, 693 (1990)CrossRefGoogle Scholar
  63. 63.
    T.L. Favre, P.J. Seijsener, P.J. Kooyman, A. Maltha, A.P. Zuur, V. Ponec, Catal. Lett. 1, 457 (1988)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Asmaa Mourhly
    • 1
  • Adnane El Hamidi
    • 1
  • Mohammed Halim
    • 1
  • Said Arsalane
    • 1
    Email author
  1. 1.Laboratory of Nanomaterials, Nanotechnologies and Environment, Center of Sciences of Materials, Faculty of SciencesUniversity of Mohammed VRabatMorocco

Personalised recommendations