Skip to main content
Log in

Photocatalytic properties of Zn2SnO4 powders prepared by different modified hydrothermal routes

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this work, different synthesis methods of zinc stannate (Zn2SnO4–ZTO) were proposed in order to obtain a material with a greater porous structure and higher surface area when compared to conventional hydrothermal method. Zn2SnO4 particles were prepared using a conventional oven method (CO), ultrasound (US), microwave (MW) and high pressure Asher (HPA), all followed by calcination at 500 °C. Fourier-transform infrared spectroscopy, X-ray diffraction, N2 adsorption–desorption (BET and BJH), diffuse reflectance spectroscopy, particle-size distribution and scanning electron microscopy were used to characterize the materials. ZTO prepared by HPA (20 bar) showed a greater surface area. On the other hand, particles with higher mesoporosity and band gap were obtained by CO route. The US route led to the formation of ZTO with larger average particle size. Therefore, all hydrothermal routes employed in this work were able to synthesize ZTO, each one with its peculiarity, producing particles with different characteristics. The ZTO photocatalytic properties were evaluated by the decolorization of Procion red dye solution. The ZTOs synthesized by HPA and MW routes showed higher photocatalytic activity, being able to decolorize more than 70% of the dye solution at 60 min under sunlight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. I. Saafi, R. Dridi, A. Mhamdi, M.H. Lakhdar, K. Boubaker, A. Amlouk, M. Amlouk, Optik (Stuttg) 126, 4382 (2015)

    Article  CAS  Google Scholar 

  2. N. Verma, S. Basu, Asian J. Sci. Technol. 6, 2122 (2015)

    CAS  Google Scholar 

  3. C. Jaramillo-Páez, P. Sánchez-Cid, J.A. Navío, M.C. Hidalgo, J. Environ. Chem. Eng. 6, 7161 (2018)

    Article  CAS  Google Scholar 

  4. H.J. Wang, Y. Cao, L.L. Wu, S.S. Wu, A. Raza, N. Liu, J.Y. Wang, T. Miyazawa, J. Environ. Chem. Eng. 6, 6771 (2018)

    Article  CAS  Google Scholar 

  5. A. Chaudhary, A. Mohammad, S.M. Mobin, Mater. Sci. Eng. B 227, 136 (2018)

    Article  CAS  Google Scholar 

  6. E.L. Foletto, J.M. Simões, M.A. Mazutti, S.L. Jahn, E.I. Muller, L.S.F. Pereira, E.M.M. Flores, Ceram. Int. 39, 4569 (2013)

    Article  CAS  Google Scholar 

  7. M. Ben Ali, F. Barka-Bouaifel, H. Elhouichet, B. Sieber, A. Addad, L. Boussekey, M. Férid, R. Boukherroub, J. Colloid Interface Sci. 457, 360 (2015)

    Article  CAS  PubMed  Google Scholar 

  8. M. Najam Khan, M. Al-Hinai, A. Al-Hinai, J. Dutta, Ceram. Int. 40, 8743 (2014)

    Article  CAS  Google Scholar 

  9. E.L. Foletto, S.L. Jahn, R.F.P.M. Moreira, J. Appl. Eletrochem. 40, 59 (2010)

    Article  CAS  Google Scholar 

  10. P.P. Das, A. Roy, M. Tathavadekar, P.S. Devi, Appl. Catal. B Environ. 203, 692 (2017)

    Article  CAS  Google Scholar 

  11. P. Jayabal, V. Sasirekha, J. Mayandi, V. Ramakrishnan, Superlattices Microstruct. 75, 775 (2014)

    Article  CAS  Google Scholar 

  12. L. Qin, S. Liang, A. Pan, X. Tan, Mater. Lett. 164, 44 (2016)

    Article  CAS  Google Scholar 

  13. X. Ji, X. Huang, Q. Zhao, A. Wang, X. Liu, J. Nanomater. 2014, 1 (2014)

    Google Scholar 

  14. F. Belliard, P.A. Connor, J.T.S. Irvine, Solid State Ionics 135, 163 (2000)

    Article  CAS  Google Scholar 

  15. J.E. Jeronsia, L.A. Joseph, M.M. Jaculine, P.A. Vinosha, S.J. Das, J. Taibah Univ. Sci. 10, 601 (2016)

    Article  Google Scholar 

  16. G. Sun, S. Zhang, Y. Li, Int. J. Photoenergy 2014, 25 (2014)

    Google Scholar 

  17. S. Kameli, A. Mehrizad, Photochem. Photobiol. 95, 512 (2019)

    Article  CAS  PubMed  Google Scholar 

  18. A. Mehrizad, M.A. Behnajady, P. Gharbani, S. Sabbagh, J. Clean. Prod. 215, 1341 (2019)

    Article  CAS  Google Scholar 

  19. E.B. Yazdani, A. Mehrizad, J. Mol. Liq. 255, 102 (2018)

    Article  CAS  Google Scholar 

  20. P. Bakhtkhosh, A. Mehrizad, J. Mol. Liq. 240, 65 (2017)

    Article  CAS  Google Scholar 

  21. A.G. Khosroshahi, A. Mehrizad, J. Mol. Liq. 275, 629 (2019)

    Article  CAS  Google Scholar 

  22. J.-B. Shi, P.-F. Wu, H.-S. Lin, Y.-T. Lin, H.-W. Lee, C.-T. Kao, W.-H. Liao, S.-L. Young, Nanoscale Res. Lett. 9, 210 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. A.R. Babar, S.B. Kumbhar, S.S. Shinde, A.V. Moholkar, J.H. Kim, K.Y. Rajpure, J. Alloys Compd. 509, 7508 (2011)

    Article  CAS  Google Scholar 

  24. Y. Zhao, L. Hu, H. Liu, M. Liao, X. Fang, L. Wu, Sci. Rep. 4, 6847 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Y. Sun, J.C. Colmenares, Z.-R. Tang, Y.-J. Xu, S. Liu, Chem. Soc. Rev. 44, 5053 (2015)

    Article  PubMed  Google Scholar 

  26. X. Fu, X. Wang, J. Long, Z. Ding, T. Yan, G. Zhang, Z. Zhang, H. Lin, X. Fu, J. Solid State Chem. 182, 517 (2009)

    Article  CAS  Google Scholar 

  27. A.V. Borhade, Y.R. Baste, Arab. J. Chem. 10, 404 (2017)

    Article  CAS  Google Scholar 

  28. C.G. Anchieta, D. Sallet, E.L. Foletto, S.S. Da Silva, O. Chiavone-Filho, C.A.O. Do Nascimento, Ceram. Int. 40, 4173 (2014)

    Article  CAS  Google Scholar 

  29. Y. Tang, J. Tian, T. Malkoske, W. Le, B. Chen, J. Mater. Sci. 52, 1581 (2017)

    Article  CAS  Google Scholar 

  30. E.L. Foletto, D.S. Paz, J.M. Simões, S. Battiston, G.C. Collazzo, M.A. Mazutti, D. Bertuol, S.L. Jahn, Lat. Am. Appl. Res. 43, 23 (2013)

    CAS  Google Scholar 

  31. İ. Altın, M. Sökmen, CLEAN Soil Air Water 43, 1025 (2015)

    Article  CAS  Google Scholar 

  32. M.D. Donohue, G.L. Aranovich, Fluid Phase Equilib. 158–160, 557 (1999)

    Article  Google Scholar 

  33. M. Thommes, Chem. Ing. Technol. 82, 1059 (2010)

    Article  CAS  Google Scholar 

  34. M. Hojamberdiev, R. Mohan, K. Morita, M. Antônio, R. Riedel, Microporous Mesoporous Mater. 151, 330 (2012)

    Article  CAS  Google Scholar 

  35. P. Schneider, P. Hudec, O. Solcova, Microporous Mesoporous Mater. 115, 491 (2008)

    Article  CAS  Google Scholar 

  36. A.L. Patterson, Phys. Rev. 56, 978 (1939)

    Article  CAS  Google Scholar 

  37. R.E. Marotti, P. Giorgi, G. Machado, E.A. Dalchiele, Sol. Energy Mater. Sol. Cells 90, 2356 (2006)

    Article  CAS  Google Scholar 

  38. A.A. Gribb, J.F. Banfield, Am. Miner. 82, 717 (1997)

    Article  CAS  Google Scholar 

  39. S. Silvestri, B. Szpoganicz, J. Schultz, A.S. Mangrich, D. Hotza, D.E. García, J.A. Labrincha, Ceram. Int. 42, 12074 (2016)

    Article  CAS  Google Scholar 

  40. J.-W. Shi, J.-T. Zheng, P. Wu, J. Hazard. Mater. 161, 416 (2009)

    Article  CAS  PubMed  Google Scholar 

  41. S. Silvestri, E.L. Foletto, Ceram. Int. 43, 14057 (2017)

    Article  CAS  Google Scholar 

  42. S. Benramache, O. Belahssen, A. Guettaf, A. Arif, J. Semicond. 35, 1 (2014)

    Google Scholar 

  43. Z.R. Tang, B. Han, C. Han, Y.J. Xu, J. Mater. Chem. A 5, 2387 (2017)

    Article  CAS  Google Scholar 

  44. D. Ma, Z. Lu, Y. Tang, T. Li, Z. Tang, Z. Yang, Phys. Lett. A 1, 5 (2014)

    Google Scholar 

  45. S. Suzuki, T. Onodera, J. Kawaji, T. Mizukami, K. Yamaga, Appl. Catal. A Gen. 427–428, 92 (2012)

    Article  CAS  Google Scholar 

  46. J. Sharma, M. Vashishtha, D.O. Shah, Glob. J. Sci. Front. Res. B Chem. 14, 19 (2014)

    Google Scholar 

  47. M. Abbasi, U. Rafique, G. Murtaza, Arab. J. Chem. 11, 827 (2018)

    Article  CAS  Google Scholar 

  48. P. Galář, B. Dzurňák, P. Malý, J. Čermák, A. Kromka, M. Omastová, B. Rezek, Int. J. Electrochem. Sci. 8, 57 (2013)

    Google Scholar 

  49. M. Kamenova, T. Marinova, J. Lumin. 80, 179 (1999)

    Google Scholar 

  50. L. Gracia, A. Beltrán, J. Andrés, J. Phys. Chem. C 115, 7740 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CAPES (PNPD - Nº 20132633-42002010038P6) (Brazilian Federal Agency for Support and Evaluation of Graduate Education), CAPES/FAPERGS Bolsista CAPES/BRASIL Nº 88887.195036/2018-00 and CNPq (454645/2012-0) (National Council for Scientific and Technological Development) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siara Silvestri.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 749 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silvestri, S., Stefanello, N., da Silveira Salla, J. et al. Photocatalytic properties of Zn2SnO4 powders prepared by different modified hydrothermal routes. Res Chem Intermed 45, 4299–4313 (2019). https://doi.org/10.1007/s11164-019-03832-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03832-1

Keywords

Navigation